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Flow networks 

Definition.  A flow network is a directed graph 
G = (V, E) with two distinguished vertices: a 
source s and a sink t.  Each edge (u, v)  E has 
a nonnegative capacity c(u, v).  If (u, v)  E, 
then c(u, v) = 0. 

Example: 
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Flow networks 

Definition.  A positive flow on G is a function p 
: V  V  R satisfying the following:  
• Capacity constraint: For all u, v  V, 

 0  p(u, v)  c(u, v). 
• Flow conservation: For all u  V \ {s, t},  

0),(),(  
 VvVv

uvpvup . 

The value of a flow is the net flow out of the 
source: 





VvVv

svpvsp ),(),( . 
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A flow on a network 

s t 
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1:3 0:1 

2:2 

positive 
flow 

capacity 

The value of this flow is 1 – 0 + 2 = 3. 

Flow conservation (like Kirchoff’s current law): 
• Flow into u is 2 + 1 = 3. 
• Flow out of u is 0 + 1 + 2 = 3. 

u 
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The maximum-flow problem 
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The value of the maximum flow is 4. 

Maximum-flow problem: Given a flow network 
G, find a flow of maximum value on G. 
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Flow cancellation 

Without loss of generality, positive flow goes 
either from u to v, or from v to u, but not both. 

v 

u 

2:3 1:2 

v 

u 

1:3 0:2 

Net flow from 
u to v in both 
cases is 1. 

The capacity constraint and flow conservation 
are preserved by this transformation. 
INTUITION: View flow as a rate, not a quantity. 

On the following slides the 
(net) flow on this edge will 
be the negated flow of the 

other direction, so, -1. 
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One summation 
instead of two. 

A notational simplification 

IDEA: Work with the net flow between two 
vertices, rather than with the positive flow. 

Definition.  A (net) flow on G is a function f  
: V  V  R satisfying the following:  
• Capacity constraint: For all u, v  V, 

 f (u, v)  c(u, v). 
• Flow conservation: For all u  V \ {s, t},  

0),( 
Vv

vuf . 

• Skew symmetry: For all u, v  V, 
 f (u, v)  –f (v, u). 
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Equivalence of definitions 

Theorem.  The two definitions are equivalent. 

Proof. () Let f (u, v) = p(u, v) – p(v, u). 
• Capacity constraint: Since p(u, v)  c(u, v) and 

p(v, u)  0, we have f (u, v)  c(u, v). 
• Flow conservation: 

 













VvVv

VvVv

uvpvup

uvpvupvuf

),(),(

),(),(),(

• Skew symmetry: 
 f (u, v) = p(u, v) – p(v, u)  

  = – (p(v, u) – p(u, v)) 
  = – f (v, u). 
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Proof (continued) 

 () Let 

p(u, v) = 
f (u, v) if f(u, v) > 0, 
0 if f(u, v)  0. 

• Capacity constraint: By definition, p(u, v)  0.  Since  
f (u, v)  c(u, v), it follows that  p(u, v)  c(u, v). 

• Flow conservation:  If f (u, v) > 0, then p(u, v) – p(v, u) 
= f (u, v).  If f (u, v)  0, then p(u, v) – p(v, u) = – f (v, u) 
= f (u, v) by skew symmetry.  Therefore, 





VvVvVv

vufuvpvup ),(),(),( . 
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Positive flow vs. (net) flow 

s t 
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Positive flow: 

s t 

2:3 

2:2 

2:3 

1:3 -1:2 

2:2 
3:3 

0:3 -2:1 
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(Net) flow: 

0:0 

-2:0 

-2:0 

-3:0 
-1:0 

-2:0 

-2:0 
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Positive flow vs. (net) flow 

s t 
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Positive flow: 

s t 

2:3 

2:2 

2:3 

1:3 -1:2 

2:2 
3:3 

0:3 -2:1 

2:2 

(Net) flow: 

0:0 

-2:0 

-2:0 

-3:0 
-1:0 

-2:0 

-2:0 

Flow conserv.: 
2+0  -  2 = 0  

Flow conserv.: 
-2-0 + 2 = 0  

in-
coming 

outgoing 

outgoing 
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Positive flow vs. (net) flow 

s t 
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2:3 1:2 

2:2 
3:3 

0:3 0:1 
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Positive flow: 

s t 

2:3 

2:2 

2:3 

1:3 -1:2 

2:2 
3:3 

0:3 -2:1 

2:2 

(Net) flow: 

0:0 
Edges with 0-
capacity are 
usually omitted, 
even if they 
carry a negative 
flow! 

-2:0 

-2:0 

-3:0 
-1:0 

-2:0 

-2:0 



4/24/12 CS 5633 Analysis of Algorithms 13 

Notation 

Definition. The value of a flow f, denoted by | f |, 
is given by 

),(

),(

Vsf

vsff
Vv



 


. 

Implicit summation notation:  A set used in 
an arithmetic formula represents a sum over 
the elements of the set.  

• Example — flow conservation: 
 f (u, V) = 0 for all u  V \ {s, t}. 
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Simple properties of flow 

Lemma. 
1. f (X, X) = 0, 
2. f (X, Y) = – f (Y, X), 
3. f (XY, Z) = f (X, Z) + f (Y, Z) if XY = . 

Theorem.  | f | =  f (V, t). 

Proof. 
 | f | =  f (s, V) 3. 

  =  f (V, V) – f (V\{s}, V) 1., 2. 

  =  f (V, V\{s}) 2., 3. 

  =  f (V, t) + f (V, V\{s,t}) Flow conservation 

  =  f (V, t). 
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Flow into the sink 

s t 

2:3 
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2:2 

| f | =  f (s, V) = 4 f (V, t) = 4 
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Cuts 

Definition. A cut (S, T) of a flow network G = 
(V, E) is a partition of V such that s  S and t  T.  
If  f  is a flow on G, then the flow across the cut is 
f (S, T). 

s t 

2:3 

2:2 

2:3 

1:3 -1:2 

2:2 
3:3 

0:3 -2:1 

2:2 

 S 

 T 

 f (S, T) = (2 + 2) + (– 2 + 1 – 1 + 2) 
 = 4 

-2:0 
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Another characterization of 
flow value 

Lemma.  For any flow f and any cut (S, T), we 
have | f | =  f (S, T). 

Proof. f (S, T) = f (S, V) – f (S, S) 
  = f (S, V) 
  = f (s, V) + f (S\{s}, V) 
  = f (s, V) 
  = | f |. 
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Capacity of a cut 

Definition. The capacity of a cut (S, T) is c(S, T). 

s t 

2:3 

2:2 

2:3 

1:3 0:2 

2:2 
3:3 

0:3 0:1 

2:2 

 S 

 T 

c(S, T) = (2 + 3) + (0 + 1 + 2 + 3) 
 = 11 

-2:0 
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Upper bound on the maximum 
flow value 

Theorem.  The value of any flow is bounded 
from above by the capacity of any cut: 
|f|  c(S,T) .   

. 

),(

),(

),(

),(

TSc

vuc

vuf

TSff

Su Tv

Su Tv













 

 

Proof. 
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Residual network 

Definition. Let  f  be a flow on G = (V, E).  The 
residual network Gf (V, Ef ) is the graph with 
strictly positive residual capacities 

cf (u, v) = c(u, v) – f (u, v) > 0. 

Edges in Ef  admit more flow. 

u v 

-3:1 

3:5 

G: u v 

4 

2 

Gf : 

Example: 

Lemma.  | Ef |  2| E |. 
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Augmenting paths 

Definition. Any path from s to t in Gf is an aug-
menting path in G with respect to  f.  The flow 
value can be increased along an augmenting 
path p by )},({min)(

),(
vucpc f

pvu
f


 . 

s 

2 

3 

Gf : 

4 

2 

7 2 

1 

t 

3 

2 

cf (p) = 2 
5:5 2:3 

s 

3:5 

G: 

2:6 -5:2 

t 

2:5 Ex.: 

-3:0 -2:0 -2:0 

-2:0 

p 
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Augmenting paths (cont.) 

. 
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cf (p) = 2 p 
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Max-flow, min-cut theorem 

Theorem.  The following are equivalent: 
1.  | f | = c(S, T) for some cut (S, T). 
2.   f is a maximum flow. 
3.  f admits no augmenting paths. 

Proof.  

(1)  (2): Since | f |  c(S, T) for any cut (S, T) (by 
the theorem from 3 slides back), the assumption that    
| f |  c(S, T) implies that  f  is a maximum flow. 

(2)  (3): If there was an augmenting path, the flow 
value could be increased, contradicting the 
maximality of  f. 

min-cut 



4/24/12 CS 5633 Analysis of Algorithms 24 

Proof (continued) 

(3)  (1): Define S = {v  V : there exists a path in Gf  
from s to v}, and let T = V \ S. Since  f  admits no 
augmenting paths, there is no path from s to t in Gf . 
Hence, s  S and t  T, and thus (S, T) is a cut. Consider 
any vertices u  S and v  T.   

We must have cf (u, v) = 0, since if cf (u, v) > 0, then v  S, 
not v  T as assumed. Thus, f (u, v) = c(u, v), since cf (u, v) 
= c(u, v) – f (u, v).  Summing over all u  S and v  T 
yields f (S, T) = c(S, T), and since | f | = f (S, T), the theorem 
follows. 

s u v 

S T path in Gf  
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Ford-Fulkerson max-flow 
algorithm 

Algorithm:  
f [u, v]  0 for all u, v  V 
while an augmenting path p in G wrt  f  exists 

do augment  f  by cf (p) 

Can be slow: 

s t 

109 109 

109 

1 

109 

G: 
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Ford-Fulkerson max-flow 
algorithm 

Can be slow: 

s t 

0:109 0:109 

0:109 

0:1 

0:109 

G: 

Algorithm:  
f [u, v]  0 for all u, v  V 
while an augmenting path p in G wrt  f  exists 

do augment  f  by cf (p) 
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Ford-Fulkerson max-flow 
algorithm 

Can be slow: 

s t 

0:109 0:109 

0:109 

0:1 

0:109 

G: 

Algorithm:  
f [u, v]  0 for all u, v  V 
while an augmenting path p in G wrt  f  exists 

do augment  f  by cf (p) 
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Ford-Fulkerson max-flow 
algorithm 

Can be slow: 

s t 

1:109 0:109 

1:109 

1:1 

0:109 

G: 

Algorithm:  
f [u, v]  0 for all u, v  V 
while an augmenting path p in G wrt  f  exists 

do augment  f  by cf (p) 
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Ford-Fulkerson max-flow 
algorithm 

Can be slow: 

s t 

1:109 0:109 

1:109 

1:1 

0:109 

G: 

Algorithm:  
f [u, v]  0 for all u, v  V 
while an augmenting path p in G wrt  f  exists 

do augment  f  by cf (p) 
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Ford-Fulkerson max-flow 
algorithm 

Can be slow: 

s t 

1:109 1:109 

1:109 

0:1 

1:109 

G: 

Algorithm:  
f [u, v]  0 for all u, v  V 
while an augmenting path p in G wrt  f  exists 

do augment  f  by cf (p) 
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Ford-Fulkerson max-flow 
algorithm 

Can be slow: 

s t 

1:109 1:109 

1:109 

0:1 

1:109 

G: 

Algorithm:  
f [u, v]  0 for all u, v  V 
while an augmenting path p in G wrt  f  exists 

do augment  f  by cf (p) 
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Ford-Fulkerson max-flow 
algorithm 

Can be slow: 

s t 

2:109 1:109 

2:109 

1:1 

1:109 

G: 

2 billion iterations on a graph with 4 vertices! 

Algorithm:  
f [u, v]  0 for all u, v  V 
while an augmenting path p in G wrt  f  exists 

do augment  f  by cf (p) 
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Ford-Fulkerson max-flow 
algorithm 

Runtime: 
• Let | f*| be the value of a maximum flow, and 
  assume it is an integral value. 
• The initialization takes O(|E|) time 
• There are at most | f*| iterations of the loop 
• Find an augmenting path with DFS in O(|V|+|E|) time 
• Each augmentation takes O(|V|) time 

 O(|E| ·|f*|) time in total 

Algorithm:  
f [u, v]  0 for all u, v  V 
while an augmenting path p in G wrt  f  exists 

do augment  f  by cf (p) 
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Edmonds-Karp algorithm 

Edmonds and Karp noticed that many people’s 
implementations of Ford-Fulkerson augment along a 
breadth-first augmenting path: a shortest path in Gf  from s 
to t where each edge has weight 1.  These implementations 
would always run relatively fast. 

Since a breadth-first augmenting path can be found in 
O(|V|+|E|) time, their analysis, which provided the first 
polynomial-time bound on maximum flow, focuses on 
bounding the number of flow augmentations. 

(In independent work, Dinic also gave polynomial-time 
bounds.) 
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Running time of Edmonds-
Karp 

• One can show that the number of flow augmentations 
(i.e., the number of iterations of the while loop) is  
O(|V| |E|). 

• Breadth-first search runs in O(|V|+|E|) time 

• All other bookkeeping is O(|V|) per augmentation. 

 The Edmonds-Karp maximum-flow 
algorithm runs in O(|V| |E| 

2) time. 
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Monotonicity lemma 

Lemma. Let d(v) = df (s, v) be the breadth-first 
distance from s to v in Gf . During the Edmonds-
Karp algorithm, d(v) increases monotonically. 

Proof.  Suppose that  f  is a flow on G, and augmentation 

produces a new flow  f .  Let d(v) = df (s, v).  We’ll show 
that d(v)  d(v) by induction on d(v).  For the base case, 
d(s)  d(s) = 0. 

For the inductive case, consider a breadth-first path s  
L  u  v in Gf .  We must have d(v)  d(u) + 1, since 
subpaths of shortest paths are shortest paths.  Certainly, 
(u, v)  Ef  , and now consider two cases depending on 
whether (u, v)  Ef . 
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Case 1 

Case: (u, v)  Ef . 

d(v)  d(u) + 1 (triangle inequality) 

  d(u) + 1 (induction) 

 = d(v) (breadth-first path), 

and thus monotonicity of d(v) is established. 

We have 
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Case 2 

Case: (u, v)  Ef . 

Since  (u, v)  Ef  , the augmenting path p that produced  

f  from  f  must have included (v, u).  Moreover, p is a 
breadth-first path in Gf : 

p = s  L  v  u  L  t . 

Thus, we have 

d(v)  d(u) – 1 (breadth-first path) 

  d(u) – 1 (induction) 

  d(v) – 2 (breadth-first path) 

 < d(v) , 

thereby establishing monotonicity for this case, too. 
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Counting flow augmentations 

Theorem.  The number of flow augmentations in 
the Edmonds-Karp algorithm (Ford-Fulkerson 
with breadth-first augmenting paths) is O(|V| |E|). 

Proof.  Let p be an augmenting path, and suppose that 
we have cf (u, v) = cf (p) for edge (u, v)  p.  Then, we 
say that (u, v) is critical, and it disappears from the 
residual graph after flow augmentation. 

s 

2 

3 

Gf : 

4 

2 

7 2 

1 

t 

3 

cf (p) = 2 Example: 

2 
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Counting flow augmentations 

s 

5 

Gf : 

2 

4 

5 

3 

t 

1 
Example: 

2 4 

Theorem.  The number of flow augmentations in 
the Edmonds-Karp algorithm (Ford-Fulkerson 
with breadth-first augmenting paths) is O(|V| |E|). 

Proof.  Let p be an augmenting path, and suppose that 
we have cf (u, v) = cf (p) for edge (u, v)  p.  Then, we 
say that (u, v) is critical, and it disappears from the 
residual graph after flow augmentation. 
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Counting flow augmentations 
(continued) 

The first time an edge (u, v) is critical, we have d(v) = 
d(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let d be the distance function when 
(v, u) is on an augmenting path.  Then, we have 

s 

u 

v 

t 

Example: 

d(u)   d(v) + 1 (breadth-first path) 

  d(v) + 1  (monotonicity) 

  d(u) + 2  (breadth-first path). 
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Counting flow augmentations 
(continued) 

The first time an edge (u, v) is critical, we have d(v) = 
d(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let d be the distance function when 
(v, u) is on an augmenting path.  Then, we have 

d(u)   d(v) + 1 (breadth-first path) 

  d(v) + 1  (monotonicity) 

  d(u) + 2  (breadth-first path). 

s 

u 

v 

t 

d(u) = 5 

d(v) = 6 

Example: 
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Counting flow augmentations 
(continued) 

The first time an edge (u, v) is critical, we have d(v) = 
d(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let d be the distance function when 
(v, u) is on an augmenting path.  Then, we have 

s 

u 

v 

t 

d(u) = 5 

d(v) = 6 

Example: 

d(u)   d(v) + 1 (breadth-first path) 

  d(v) + 1  (monotonicity) 

  d(u) + 2  (breadth-first path). 
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Counting flow augmentations 
(continued) 

The first time an edge (u, v) is critical, we have d(v) = 
d(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let d be the distance function when 
(v, u) is on an augmenting path.  Then, we have 

s 

u 

v 

t 

d(u)  7 

d(v)  6 

Example: 

d(u)   d(v) + 1 (breadth-first path) 

  d(v) + 1  (monotonicity) 

  d(u) + 2  (breadth-first path). 
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Counting flow augmentations 
(continued) 

The first time an edge (u, v) is critical, we have d(v) = 
d(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let d be the distance function when 
(v, u) is on an augmenting path.  Then, we have 

s 

u 

v 

t 

d(u)  7 

d(v)  6 

Example: 

d(u)   d(v) + 1 (breadth-first path) 

  d(v) + 1  (monotonicity) 

  d(u) + 2  (breadth-first path). 
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Counting flow augmentations 
(continued) 

The first time an edge (u, v) is critical, we have d(v) = 
d(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let d be the distance function when 
(v, u) is on an augmenting path.  Then, we have 

s 

u 

v 

t 

d(u)  7 

d(v)  8 

Example: 

d(u)   d(v) + 1 (breadth-first path) 

  d(v) + 1  (monotonicity) 

  d(u) + 2  (breadth-first path). 
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Running time of Edmonds-
Karp 

Distances start out nonnegative, never decrease, and are 
at most |V| – 1 until the vertex becomes unreachable.  
Thus, (u, v) occurs as a critical edge O(|V|) times, 
because d(v) increases by at least 2 between 
occurrences.  Since the residual graph contains O(|E|) 
edges, the number of flow augmentations is O(|V| |E|). 

Corollary.  The Edmonds-Karp maximum-flow 
algorithm runs in O(|V| |E| 

2) time. 

Proof.  Breadth-first search runs in O(|E|) time, and 
all other bookkeeping is O(|V|) per augmentation. 
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Best to date 

• The asymptotically fastest algorithm to date for 
maximum flow, due to King, Rao, and Tarjan, runs 
in O(|V||E| log|E|/(|V| log |V|)|V|) time. 

• If we allow running times as a function of edge 
weights, the fastest algorithm for maximum flow, 
due to Goldberg and Rao, runs in time 

O(min{|V| 2/3, |E| 1/2}  |E| log (|V| 2/|E| + 2)  log C), 

 where C is the maximum capacity of any edge in 
the graph. 


