
CS 5633 -- Spring 2012

Flow Networks
Carola Wenk

Slides courtesy of Charles Leiserson with
small changes by Carola Wenk

4/24/12 CS 5633 Analysis of Algorithms 2

Flow networks

Definition. A flow network is a directed graph
G = (V, E) with two distinguished vertices: a
source s and a sink t. Each edge (u, v)  E has
a nonnegative capacity c(u, v). If (u, v)  E,
then c(u, v) = 0.

Example:

s t

3

2

3

3 2

2
3

3 1

2

1

4/24/12 CS 5633 Analysis of Algorithms 3

Flow networks

Definition. A positive flow on G is a function p
: V  V  R satisfying the following:
• Capacity constraint: For all u, v  V,

 0  p(u, v)  c(u, v).
• Flow conservation: For all u  V \ {s, t},

0),(),( 
 VvVv

uvpvup .

The value of a flow is the net flow out of the
source:





VvVv

svpvsp),(),(.

4/24/12 CS 5633 Analysis of Algorithms 4

A flow on a network

s t

1:3

2:2

2:3

2:3 1:2

1:2
2:3

1:3 0:1

2:2

positive
flow

capacity

The value of this flow is 1 – 0 + 2 = 3.

Flow conservation (like Kirchoff’s current law):
• Flow into u is 2 + 1 = 3.
• Flow out of u is 0 + 1 + 2 = 3.

u

4/24/12 CS 5633 Analysis of Algorithms 5

The maximum-flow problem

s t

2:3

2:2

2:3

2:3 1:2

2:2
3:3

0:3 0:1

2:2

The value of the maximum flow is 4.

Maximum-flow problem: Given a flow network
G, find a flow of maximum value on G.

4/24/12 CS 5633 Analysis of Algorithms 6

Flow cancellation

Without loss of generality, positive flow goes
either from u to v, or from v to u, but not both.

v

u

2:3 1:2

v

u

1:3 0:2

Net flow from
u to v in both
cases is 1.

The capacity constraint and flow conservation
are preserved by this transformation.
INTUITION: View flow as a rate, not a quantity.

On the following slides the
(net) flow on this edge will
be the negated flow of the

other direction, so, -1.

4/24/12 CS 5633 Analysis of Algorithms 7

One summation
instead of two.

A notational simplification

IDEA: Work with the net flow between two
vertices, rather than with the positive flow.

Definition. A (net) flow on G is a function f
: V  V  R satisfying the following:
• Capacity constraint: For all u, v  V,

 f (u, v)  c(u, v).
• Flow conservation: For all u  V \ {s, t},

0),(
Vv

vuf .

• Skew symmetry: For all u, v  V,
 f (u, v)  –f (v, u).

4/24/12 CS 5633 Analysis of Algorithms 8

Equivalence of definitions

Theorem. The two definitions are equivalent.

Proof. () Let f (u, v) = p(u, v) – p(v, u).
• Capacity constraint: Since p(u, v)  c(u, v) and

p(v, u)  0, we have f (u, v)  c(u, v).
• Flow conservation:

 













VvVv

VvVv

uvpvup

uvpvupvuf

),(),(

),(),(),(

• Skew symmetry:
 f (u, v) = p(u, v) – p(v, u)

 = – (p(v, u) – p(u, v))
 = – f (v, u).

4/24/12 CS 5633 Analysis of Algorithms 9

Proof (continued)

 () Let

p(u, v) =
f (u, v) if f(u, v) > 0,
0 if f(u, v)  0.

• Capacity constraint: By definition, p(u, v)  0. Since
f (u, v)  c(u, v), it follows that p(u, v)  c(u, v).

• Flow conservation: If f (u, v) > 0, then p(u, v) – p(v, u)
= f (u, v). If f (u, v)  0, then p(u, v) – p(v, u) = – f (v, u)
= f (u, v) by skew symmetry. Therefore,





VvVvVv

vufuvpvup),(),(),(.

4/24/12 CS 5633 Analysis of Algorithms 10

Positive flow vs. (net) flow

s t

2:3

2:2

2:3

2:3 1:2

2:2
3:3

0:3 0:1

2:2

Positive flow:

s t

2:3

2:2

2:3

1:3 -1:2

2:2
3:3

0:3 -2:1

2:2

(Net) flow:

0:0

-2:0

-2:0

-3:0
-1:0

-2:0

-2:0

4/24/12 CS 5633 Analysis of Algorithms 11

Positive flow vs. (net) flow

s t

2:3

2:2

2:3

2:3 1:2

2:2
3:3

0:3 0:1

2:2

Positive flow:

s t

2:3

2:2

2:3

1:3 -1:2

2:2
3:3

0:3 -2:1

2:2

(Net) flow:

0:0

-2:0

-2:0

-3:0
-1:0

-2:0

-2:0

Flow conserv.:
2+0 - 2 = 0

Flow conserv.:
-2-0 + 2 = 0

in-
coming

outgoing

outgoing

4/24/12 CS 5633 Analysis of Algorithms 12

Positive flow vs. (net) flow

s t

2:3

2:2

2:3

2:3 1:2

2:2
3:3

0:3 0:1

2:2

Positive flow:

s t

2:3

2:2

2:3

1:3 -1:2

2:2
3:3

0:3 -2:1

2:2

(Net) flow:

0:0
Edges with 0-
capacity are
usually omitted,
even if they
carry a negative
flow!

-2:0

-2:0

-3:0
-1:0

-2:0

-2:0

4/24/12 CS 5633 Analysis of Algorithms 13

Notation

Definition. The value of a flow f, denoted by | f |,
is given by

),(

),(

Vsf

vsff
Vv



 


.

Implicit summation notation: A set used in
an arithmetic formula represents a sum over
the elements of the set.

• Example — flow conservation:
 f (u, V) = 0 for all u  V \ {s, t}.

4/24/12 CS 5633 Analysis of Algorithms 14

Simple properties of flow

Lemma.
1. f (X, X) = 0,
2. f (X, Y) = – f (Y, X),
3. f (XY, Z) = f (X, Z) + f (Y, Z) if XY = .

Theorem. | f | = f (V, t).

Proof.
 | f | = f (s, V) 3.

 = f (V, V) – f (V\{s}, V) 1., 2.

 = f (V, V\{s}) 2., 3.

 = f (V, t) + f (V, V\{s,t}) Flow conservation

 = f (V, t).

4/24/12 CS 5633 Analysis of Algorithms 15

Flow into the sink

s t

2:3

2:2

2:3

1:3 -1:2

2:2
3:3

0:3 -2:1

2:2

| f | = f (s, V) = 4 f (V, t) = 4

4/24/12 CS 5633 Analysis of Algorithms 16

Cuts

Definition. A cut (S, T) of a flow network G =
(V, E) is a partition of V such that s  S and t  T.
If f is a flow on G, then the flow across the cut is
f (S, T).

s t

2:3

2:2

2:3

1:3 -1:2

2:2
3:3

0:3 -2:1

2:2

 S

 T

 f (S, T) = (2 + 2) + (– 2 + 1 – 1 + 2)
 = 4

-2:0

4/24/12 CS 5633 Analysis of Algorithms 17

Another characterization of
flow value

Lemma. For any flow f and any cut (S, T), we
have | f | = f (S, T).

Proof. f (S, T) = f (S, V) – f (S, S)
 = f (S, V)
 = f (s, V) + f (S\{s}, V)
 = f (s, V)
 = | f |.

4/24/12 CS 5633 Analysis of Algorithms 18

Capacity of a cut

Definition. The capacity of a cut (S, T) is c(S, T).

s t

2:3

2:2

2:3

1:3 0:2

2:2
3:3

0:3 0:1

2:2

 S

 T

c(S, T) = (2 + 3) + (0 + 1 + 2 + 3)
 = 11

-2:0

4/24/12 CS 5633 Analysis of Algorithms 19

Upper bound on the maximum
flow value

Theorem. The value of any flow is bounded
from above by the capacity of any cut:
|f|  c(S,T) .

.

),(

),(

),(

),(

TSc

vuc

vuf

TSff

Su Tv

Su Tv













 

 

Proof.

4/24/12 CS 5633 Analysis of Algorithms 20

Residual network

Definition. Let f be a flow on G = (V, E). The
residual network Gf (V, Ef) is the graph with
strictly positive residual capacities

cf (u, v) = c(u, v) – f (u, v) > 0.

Edges in Ef admit more flow.

u v

-3:1

3:5

G: u v

4

2

Gf :

Example:

Lemma. | Ef |  2| E |.

4/24/12 CS 5633 Analysis of Algorithms 21

Augmenting paths

Definition. Any path from s to t in Gf is an aug-
menting path in G with respect to f. The flow
value can be increased along an augmenting
path p by)},({min)(

),(
vucpc f

pvu
f


 .

s

2

3

Gf :

4

2

7 2

1

t

3

2

cf (p) = 2
5:5 2:3

s

3:5

G:

2:6 -5:2

t

2:5 Ex.:

-3:0 -2:0 -2:0

-2:0

p

4/24/12 CS 5633 Analysis of Algorithms 22

Augmenting paths (cont.)

.

s

2

3

Gf :

4

2

7 2

1

t

3

2

5:5 2:3

s

3:5

G:

2:6 -5:2

t

2:5

-3:0 -2:0 -2:0

-2:0

.

s

5

Gf :

2

4

5

3

t

1

4

3:5 0:3

s

5:5

G:

4:6 -3:2

t

4:5

-5:0 -4:0 -4:0

0:0

cf (p) = 2 p

2

4/24/12 CS 5633 Analysis of Algorithms 23

Max-flow, min-cut theorem

Theorem. The following are equivalent:
1. | f | = c(S, T) for some cut (S, T).
2. f is a maximum flow.
3. f admits no augmenting paths.

Proof.

(1)  (2): Since | f |  c(S, T) for any cut (S, T) (by
the theorem from 3 slides back), the assumption that
| f |  c(S, T) implies that f is a maximum flow.

(2)  (3): If there was an augmenting path, the flow
value could be increased, contradicting the
maximality of f.

min-cut

4/24/12 CS 5633 Analysis of Algorithms 24

Proof (continued)

(3)  (1): Define S = {v  V : there exists a path in Gf
from s to v}, and let T = V \ S. Since f admits no
augmenting paths, there is no path from s to t in Gf .
Hence, s  S and t  T, and thus (S, T) is a cut. Consider
any vertices u  S and v  T.

We must have cf (u, v) = 0, since if cf (u, v) > 0, then v  S,
not v  T as assumed. Thus, f (u, v) = c(u, v), since cf (u, v)
= c(u, v) – f (u, v). Summing over all u  S and v  T
yields f (S, T) = c(S, T), and since | f | = f (S, T), the theorem
follows.

s u v

S T path in Gf

4/24/12 CS 5633 Analysis of Algorithms 25

Ford-Fulkerson max-flow
algorithm

Algorithm:
f [u, v]  0 for all u, v  V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

Can be slow:

s t

109 109

109

1

109

G:

4/24/12 CS 5633 Analysis of Algorithms 26

Ford-Fulkerson max-flow
algorithm

Can be slow:

s t

0:109 0:109

0:109

0:1

0:109

G:

Algorithm:
f [u, v]  0 for all u, v  V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

4/24/12 CS 5633 Analysis of Algorithms 27

Ford-Fulkerson max-flow
algorithm

Can be slow:

s t

0:109 0:109

0:109

0:1

0:109

G:

Algorithm:
f [u, v]  0 for all u, v  V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

4/24/12 CS 5633 Analysis of Algorithms 28

Ford-Fulkerson max-flow
algorithm

Can be slow:

s t

1:109 0:109

1:109

1:1

0:109

G:

Algorithm:
f [u, v]  0 for all u, v  V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

4/24/12 CS 5633 Analysis of Algorithms 29

Ford-Fulkerson max-flow
algorithm

Can be slow:

s t

1:109 0:109

1:109

1:1

0:109

G:

Algorithm:
f [u, v]  0 for all u, v  V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

4/24/12 CS 5633 Analysis of Algorithms 30

Ford-Fulkerson max-flow
algorithm

Can be slow:

s t

1:109 1:109

1:109

0:1

1:109

G:

Algorithm:
f [u, v]  0 for all u, v  V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

4/24/12 CS 5633 Analysis of Algorithms 31

Ford-Fulkerson max-flow
algorithm

Can be slow:

s t

1:109 1:109

1:109

0:1

1:109

G:

Algorithm:
f [u, v]  0 for all u, v  V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

4/24/12 CS 5633 Analysis of Algorithms 32

Ford-Fulkerson max-flow
algorithm

Can be slow:

s t

2:109 1:109

2:109

1:1

1:109

G:

2 billion iterations on a graph with 4 vertices!

Algorithm:
f [u, v]  0 for all u, v  V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

4/24/12 CS 5633 Analysis of Algorithms 33

Ford-Fulkerson max-flow
algorithm

Runtime:
• Let | f*| be the value of a maximum flow, and
 assume it is an integral value.
• The initialization takes O(|E|) time
• There are at most | f*| iterations of the loop
• Find an augmenting path with DFS in O(|V|+|E|) time
• Each augmentation takes O(|V|) time

 O(|E| ·|f*|) time in total

Algorithm:
f [u, v]  0 for all u, v  V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

4/24/12 CS 5633 Analysis of Algorithms 34

Edmonds-Karp algorithm

Edmonds and Karp noticed that many people’s
implementations of Ford-Fulkerson augment along a
breadth-first augmenting path: a shortest path in Gf from s
to t where each edge has weight 1. These implementations
would always run relatively fast.

Since a breadth-first augmenting path can be found in
O(|V|+|E|) time, their analysis, which provided the first
polynomial-time bound on maximum flow, focuses on
bounding the number of flow augmentations.

(In independent work, Dinic also gave polynomial-time
bounds.)

4/24/12 CS 5633 Analysis of Algorithms 35

Running time of Edmonds-
Karp

• One can show that the number of flow augmentations
(i.e., the number of iterations of the while loop) is
O(|V| |E|).

• Breadth-first search runs in O(|V|+|E|) time

• All other bookkeeping is O(|V|) per augmentation.

 The Edmonds-Karp maximum-flow
algorithm runs in O(|V| |E|

2) time.

4/24/12 CS 5633 Analysis of Algorithms 36

Monotonicity lemma

Lemma. Let d(v) = df (s, v) be the breadth-first
distance from s to v in Gf . During the Edmonds-
Karp algorithm, d(v) increases monotonically.

Proof. Suppose that f is a flow on G, and augmentation

produces a new flow f . Let d(v) = df (s, v). We’ll show
that d(v)  d(v) by induction on d(v). For the base case,
d(s)  d(s) = 0.

For the inductive case, consider a breadth-first path s 
L  u  v in Gf . We must have d(v)  d(u) + 1, since
subpaths of shortest paths are shortest paths. Certainly,
(u, v)  Ef  , and now consider two cases depending on
whether (u, v)  Ef .

4/24/12 CS 5633 Analysis of Algorithms 37

Case 1

Case: (u, v)  Ef .

d(v)  d(u) + 1 (triangle inequality)

  d(u) + 1 (induction)

 = d(v) (breadth-first path),

and thus monotonicity of d(v) is established.

We have

4/24/12 CS 5633 Analysis of Algorithms 38

Case 2

Case: (u, v)  Ef .

Since (u, v)  Ef  , the augmenting path p that produced

f  from f must have included (v, u). Moreover, p is a
breadth-first path in Gf :

p = s  L  v  u  L  t .

Thus, we have

d(v)  d(u) – 1 (breadth-first path)

  d(u) – 1 (induction)

  d(v) – 2 (breadth-first path)

 < d(v) ,

thereby establishing monotonicity for this case, too.

4/24/12 CS 5633 Analysis of Algorithms 39

Counting flow augmentations

Theorem. The number of flow augmentations in
the Edmonds-Karp algorithm (Ford-Fulkerson
with breadth-first augmenting paths) is O(|V| |E|).

Proof. Let p be an augmenting path, and suppose that
we have cf (u, v) = cf (p) for edge (u, v)  p. Then, we
say that (u, v) is critical, and it disappears from the
residual graph after flow augmentation.

s

2

3

Gf :

4

2

7 2

1

t

3

cf (p) = 2 Example:

2

4/24/12 CS 5633 Analysis of Algorithms 40

Counting flow augmentations

s

5

Gf :

2

4

5

3

t

1
Example:

2 4

Theorem. The number of flow augmentations in
the Edmonds-Karp algorithm (Ford-Fulkerson
with breadth-first augmenting paths) is O(|V| |E|).

Proof. Let p be an augmenting path, and suppose that
we have cf (u, v) = cf (p) for edge (u, v)  p. Then, we
say that (u, v) is critical, and it disappears from the
residual graph after flow augmentation.

4/24/12 CS 5633 Analysis of Algorithms 41

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have d(v) =
d(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let d be the distance function when
(v, u) is on an augmenting path. Then, we have

s

u

v

t

Example:

d(u)  d(v) + 1 (breadth-first path)

  d(v) + 1 (monotonicity)

  d(u) + 2 (breadth-first path).

4/24/12 CS 5633 Analysis of Algorithms 42

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have d(v) =
d(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let d be the distance function when
(v, u) is on an augmenting path. Then, we have

d(u)  d(v) + 1 (breadth-first path)

  d(v) + 1 (monotonicity)

  d(u) + 2 (breadth-first path).

s

u

v

t

d(u) = 5

d(v) = 6

Example:

4/24/12 CS 5633 Analysis of Algorithms 43

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have d(v) =
d(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let d be the distance function when
(v, u) is on an augmenting path. Then, we have

s

u

v

t

d(u) = 5

d(v) = 6

Example:

d(u)  d(v) + 1 (breadth-first path)

  d(v) + 1 (monotonicity)

  d(u) + 2 (breadth-first path).

4/24/12 CS 5633 Analysis of Algorithms 44

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have d(v) =
d(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let d be the distance function when
(v, u) is on an augmenting path. Then, we have

s

u

v

t

d(u)  7

d(v)  6

Example:

d(u)  d(v) + 1 (breadth-first path)

  d(v) + 1 (monotonicity)

  d(u) + 2 (breadth-first path).

4/24/12 CS 5633 Analysis of Algorithms 45

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have d(v) =
d(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let d be the distance function when
(v, u) is on an augmenting path. Then, we have

s

u

v

t

d(u)  7

d(v)  6

Example:

d(u)  d(v) + 1 (breadth-first path)

  d(v) + 1 (monotonicity)

  d(u) + 2 (breadth-first path).

4/24/12 CS 5633 Analysis of Algorithms 46

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have d(v) =
d(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let d be the distance function when
(v, u) is on an augmenting path. Then, we have

s

u

v

t

d(u)  7

d(v)  8

Example:

d(u)  d(v) + 1 (breadth-first path)

  d(v) + 1 (monotonicity)

  d(u) + 2 (breadth-first path).

4/24/12 CS 5633 Analysis of Algorithms 47

Running time of Edmonds-
Karp

Distances start out nonnegative, never decrease, and are
at most |V| – 1 until the vertex becomes unreachable.
Thus, (u, v) occurs as a critical edge O(|V|) times,
because d(v) increases by at least 2 between
occurrences. Since the residual graph contains O(|E|)
edges, the number of flow augmentations is O(|V| |E|).

Corollary. The Edmonds-Karp maximum-flow
algorithm runs in O(|V| |E|

2) time.

Proof. Breadth-first search runs in O(|E|) time, and
all other bookkeeping is O(|V|) per augmentation.

4/24/12 CS 5633 Analysis of Algorithms 48

Best to date

• The asymptotically fastest algorithm to date for
maximum flow, due to King, Rao, and Tarjan, runs
in O(|V||E| log|E|/(|V| log |V|)|V|) time.

• If we allow running times as a function of edge
weights, the fastest algorithm for maximum flow,
due to Goldberg and Rao, runs in time

O(min{|V| 2/3, |E| 1/2}  |E| log (|V| 2/|E| + 2)  log C),

 where C is the maximum capacity of any edge in
the graph.

