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ALGORITHMS

~ Flow networks

L i
\\\‘ \‘

Definition. A flow network Is a directed graph
G = (V, E) with two distinguished vertices: a
source s and a sink t. Each edge (u, v) € E has
a nonnegative capacity c(u, v). If (u,v) ¢ E,
then c(u, v) = 0.

Example:
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=" Flow networks

)

Definition. A positive flow on G is a function p
-V x V — R satisfying the following:
 Capacity constraint: Forall u, v € V,

0 <p(u, V) <c(u, v).
* Flow conservation: Forall u € V\ {s, t},

> p(u,v)— ) p(v,u)=0.

veV veV

The value of a flow Is the net flow out of the

Source.
Z p(S’V) o Z p(V’ S) .

veV veV
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ALGORITHMS

~~ A flow on a network

" ““
positive capacity
flow ~_. /
1:3

Flow conservation (like Kirchoff’s current law):
e Flowintouis2 + 1 = 3.
e FlowoutofuisO+1+2=23.

The value of thisflowis1 -0+ 2 =3.
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ALGORITHMS

The maximum-flow problem

\\\

I\/IaX|mum flow problem: Given a flow network
G, find a flow of maximum value on G.

The value of the maximum flow Is 4.
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..‘ Flow cancellation

\\\ ‘_:‘::;

Without loss of generality, positive flow goes
either from u to v, or from v to u, but not both.

2.

.

Net flow from
u to v In both
casesIs 1

(net) flow on this edge will
be the negated flow of the
other direction, so, -1.

3| |12 i> 1:3 |02 -
7~ 0n the following slides the

J

he capacity constraint and flow conservation

are preserved by this transformation. _
INTUITION: View flow as a rate, not a quantity.

4/24/12
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=+ A notational simplification

IDEA: Work with the net flow between two
vertices, rather than with the positive flow.

Definition. A (net) flow on G Is a function f
-V x V — R satisfying the following:
 Capacity constraint: Forall u, v € V,
f(u, v) <c(u, v).
* Flow conservation: Forall u € V\ {s, t},
Z f (u,v) = 0.— One summation
=y Instead of two.

« Skew symmetry: Forall u, v € V,
f(u, v) =—f(v, u).

4/24]/12 CS 5633 Analysis of Algorithms 7



=+~ Equivalence of definitions

AR " freestneeiess

Theorem. The two definitions are equivalent.

Proof. (=) Let f(u, v) = p(u, v) — p(v, u).

» Capacity constraint: Since p(u, v) < c(u, v) and
p(v, u) =0, we have f(u, v) < c(u, v).

* Flow conservation:

> fuv) =) (pu,v) - pv,u))

veV veV
=> pu,v)— ) p(v,u)
veV veV

« Skew symmetry:
f(U, V) - p(U, V) o p(V, U)

=~ (p(v, u) - p(u, v))
=—f(v, u.
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] f(u,v) 1ff(u,v) >0,
p(u, V) —{ 0 if f(u, v) < 0.

 Capacity constraint: By definition, p(u, v) > 0. Since
f(u, v) <c(u,v), it follows that p(u, v) <c(u, v).

« Flow conservation: If f(u, v) >0, then p(u, v) — p(v, u)
=f(u,v). Iff(u,v) <0, thenp(u, v) —p(v, u) =—f(v, u)
= f(u, v) by skew symmetry. Therefore,

Z p(u,v)—z p(v,u) :Z f(u,v).

veV veV veV
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(Net) flow:
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ALGORITHMS

-~ Positive flow vs. (net) flow

=y
! \‘

Positive flow:

Flow conserv.:

2+0 - 2=0
IN-" outgoing
coming

(Net) flow:

Flow conserv.:
‘-2—0 + % =0

outgoing
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: Edges with O-
: capacity are
: usually omitted,
- even If they :
 carry a negative
 flow! :
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:-\;"i-',"'- Notation

Definition. The value of a flow f, denoted by |f |,

IS given by
fl=> f(sv)
veV

= f(s,V).

Implicit summation notation: A set used In
an arithmetic formula represents a sum over
the elements of the set.
« Example — flow conservation:

f(u, V)=0forallu e V\{s, t}.
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\ <~ Simple properties of flow

Lemma.

1. f (X, X) =0,

2. T(X,Y)=—1(Y, X),

3. f(XWY, 2) =1 (X, 2) +f(Y, 2) If XY = .

Theorem. |f|= f(V,t).
Proof.

1f| = f(s, V) 3.
f(vV,V)-f(V\{s},V) 1,2

f(V, V\{s}) 2., 3.
f(V,0)+1(V, V\{s,1}) Flow conservation

f(V, 1),
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Definition. A cut (S, T) of a flow network G =
(V, E) 1s a partition of V such thats € Sandt € T.
If f isaflow on G, then the flow across the cut Is

£(S, T).

’ 2:2 |
213 Fapos -" . 2:3 O c S
6“ 21 034y 1:3 QeT

2: T 2:2

fST)=2+2)+(-2+1-1+2)
=4
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ALGORITHMS

@3 Another characterization of
~> " flow value

Lemma. For any flow f and any cut (S, T), we
have [f|= (S, T).

Proof. f(S, T)=1(S,V)-1(S,S)
=f(S, V)
=f(s, V) +f(S\{s}, V)
f(s, V)
| 1.
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“ &~ Capacity of a cut
Definition. The capacity of a cut (S, T) isc(S, T).

2.2
-i;o' Vil QeSS

2:3
QAT T o
2: 2.2

33

c(S5,T)=(R2+3)+(0+1+2+3)
=11
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@ Upper bound on the maximum
~* flow value

Theorem. The value of any flow Is bounded
from above by the capacity of any cut:

If| <c(S,T).

Proof. fl=1(ST)

=> > f(u,v)

ueSveTl

<> > c(u,v)

ueSvel °

=c(S,T)
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“ &~ Residual network

Definition. Let f beaflowon G =(V, E). The
residual network G; (V, E;) Is the graph with
strictly positive residual capacities

C:(u, v) =c(u,v)—f(u,v)>0.

Edges in E; admit more flow.

Example: - ,
3:9 2

Lemma. |E;| <2|E|.
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ALGORITHMS

—_— Augmenting paths

)

Definition. Any path from s to t in G, is an aug-
menting path in G with respect to f. The flow
value can be increased along an augmenting

path p by c; (p)= min {c¢ (u,v)}.
(u,v)ep

Ex.: 3:5 2:6 -5:2 22:0 2:5
G:

¢ (p) = 2 pz' s 7 2 3
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Augmenting paths (cont.)

3:5 2:6 -5:2 -2:0 2:5
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m

«* Max- flow, min-cut theorem

Theorem The following are equivalent:

| ] =c(S, T) for some cut (S, T). <= min-cut

2. f1s a maximum flow.
3. fadmits no augmenting paths.

Proof.

(1) = (2): Since | T | <c(S, T) forany cut (S, T) (by
the theorem from 3 slides back), the assumption that
| T|=c(S, T) implies that f 1sa maximum flow.

(2) = (3): If there was an augmenting path, the flow
value could be increased, contradicting the
maximality of f.
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ALGORITHMS

Proof (continued)

(3) — (1): Define S = {v € V : there exists a path in G;
fromstov}, andlet T =V \S. Since f admits no
augmenting paths, there is no path fromstotin G;.
Hence,s € Sandt € T, and thus (S, T) Is a cut. Consider
any verticesu € Sandv < T.

D D eRO

path in G; S | T

We must have c; (u, v) =0, since if ¢, (u, v) > 0, thenv € S,
notv e T as assumed. Thus, f(u, v) = c(u, v), since c; (u, v)
=c(u,v)—"f(u,v). Summingoverallu e Sandv e T

yields (S, T) =c¢(S, T), and since | f | = f(S, T), the theorem
follows.
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= Ford-Fulkerson max-flow
-
~>* " algorithm

Algorlthm.
flu,vl<«<Oforallu,veV
while an augmenting path p in G wrt  exists
do augment f by c;(p)

Can be slow:
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e Ford-Fulkerson max-flow
- :?\
~>* " algorithm

Algorithm:
flu,vl<«<Oforallu,veV
while an augmenting path p in G wrt  exists
do augment f by c;(p)

Can be slow:

0:10°
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=== Ford-Fulkerson max-flow
- 1?‘
~>* " algorithm

Algorithm:
flu,vl<«<Oforallu,veV
while an augmenting path p in G wrt  exists
do augment f by c;(p)

Can be slow:

0:10°
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=== Ford-Fulkerson max-flow
- 1?‘
~>* " algorithm

Algorithm:
flu,vl<«<Oforallu,veV
while an augmenting path p in G wrt  exists
do augment f by c;(p)

Can be slow:

1:10°
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=== Ford-Fulkerson max-flow
- 1?‘
~>* " algorithm

Algorithm:
flu,vl<«<Oforallu,veV
while an augmenting path p in G wrt  exists
do augment f by c;(p)

Can be slow:

1:10°
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=== Ford-Fulkerson max-flow
- 1?‘
~>* " algorithm

Algorithm:
flu,vl<«<Oforallu,veV
while an augmenting path p in G wrt  exists
do augment f by c;(p)

Can be slow:

1:10°
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=== Ford-Fulkerson max-flow
- 1?‘
~>* " algorithm

Algorithm:
flu,vl<«<Oforallu,veV
while an augmenting path p in G wrt  exists
do augment f by c;(p)

Can be slow:

1:10°
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= Ford-Fulkerson max-flow
K _\\
~7 algorithm

Algorlthm.
flu,vl<«<Oforallu,veV
while an augmenting path p in G wrt  exists
do augment f by c;(p)

Can be slow:

2:10°

2 billion 1terations on a graph with 4 vertices!
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ALGORITHMS

:«‘_... algorlthm

Algorithm:
flu,vl<«<Oforallu,veV
while an augmenting path p in G wrt  exists
do augment f by c;(p)

Runtime:

* Let | *| be the value of a maximum flow, and
assume It is an integral value.
 The initialization takes O(|E|) time
 There are at most | f*| iterations of the loop
 Find an augmenting path with DFS in O(|V|+|E|) time
 Each augmentation takes O(|V|) time

= O(|E| :|f*[) time In total
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“ &~ Edmonds-Karp algorithm
Edmonds and Karp noticed that many people’s
Implementations of Ford-Fulkerson augment along a
breadth-first augmenting path: a shortest path in G; from s
to t where each edge has weight 1. These implementations
would always run relatively fast.

Since a breadth-first augmenting path can be found in
O(|V|+|E]|) time, their analysis, which provided the first
polynomial-time bound on maximum flow, focuses on
bounding the number of flow augmentations.

(In independent work, Dinic also gave polynomial-time
bounds.)
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m= Running time of Edmonds-

-l
."_‘\

Q

:\\‘\‘ Ka r p

 One can show that the number of flow augmentations
(1.e., the number of iterations of the while loop) Is

O(VI [E]).
e Breadth-f
 All other

Irst search runs in O(|V|+|E|) time

nookkeeping i1s O(|V|) per augmentation.

= The Eo
algorithm

4/24/12

monds-Karp maximum-flow
runs in O(|V| |[E|?) time.

CS 5633 Analysis of Algorithms
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~~ Monotonicity lemma

-
.\
\—
\\\‘ e

Lemma. Let o(V) = &4 (S, v) be the breadth-first
distance from s to v in G;. During the Edmonds-
Karp algorithm, 6(v) increases monotonically.

Proof. Suppose that f Is a flow on G, and augmentation

produces a new flow f'. Leto'(v) = o:(s, v). We’ll show
that 6'(v) > 6(v) by induction on 6(v). For the base case,
0'(s) = 9(s) = 0.

For the inductive case, consider a breadth-first path s —
-« = U—VviIn G;. We must have &'(v) = o'(u) + 1, since
subpaths of shortest paths are shortest paths. Certainly,
(u, v) € E;/, and now consider two cases depending on
whether (u, v) € E;.
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N -
Y \‘

Case: (u, v) € E;.
We have
o(v) <o(u) +1 (triangle inequality)
<o'(u)y+1  (induction)
= 0'(V) (breadth-first path),

and thus monotonicity of 6(v) Is established.
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\-’;‘;\',""~ Case 2
Case: (u, V) ¢ E;.
Since (u, V) € E;, the augmenting path p that produced

f" from f must have included (v, u). Moreover, p Is a
breadth-first path in G;:

Pp=S—>:-->V>U—>-->t.
Thus, we have
o(V) =o(u) -1 (breadth-first path)
<o'(u)—1  (induction)
=0'(V) — 2 (breadth-first path)
<d'(v),
thereby establishing monotonicity for this case, too.

4/24]/12 CS 5633 Analysis of Algorithms
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ALGORITHMS

\j‘:-': Counting flow augmentations

Theorem. The number of flow augmentations In
the Edmonds-Karp algorithm (Ford-Fulkerson
with breadth-first augmenting paths) i1s O(|V| |E]).

Proof. Let p be an augmenting path, and suppose that
we have c; (U, v) = c¢(p) for edge (u, v) € p. Then, we
say that (u, v) Is critical, and 1t disappears from the
residual graph after flow augmentation.

Example: Ci (p) =2
2 4 7 2 3
3 2 1 2
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“";v Counting flow augmentations

Theorem. The number of flow augmentations in
the Edmonds-Karp algorithm (Ford-Fulkerson
with breadth-first augmenting paths) i1s O(|V| |E]).
Proof. Let p be an augmenting path, and suppose that
we have c; (U, v) = c¢(p) for edge (u, v) € p. Then, we
say that (u, v) Is critical, and 1t disappears from the
residual graph after flow augmentation.

Example:
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| v‘...‘ (contlnued)
The flrst time an edge (u, v) Is critical, we have 6(v) =
o(u) + 1, since p Is a breadth-first path. We must wait
until (v, u) I1s on an augmenting path before (u, v) can
be critical again. Let &’ be the distance function when
(v, u) Is on an augmenting path. Then, we have
o'(u) =0o'(v) +1  (breadth-first path)
>9(v) +1 (monotonicity)
=0o(u) +2  (breadth-first path).

Example:

O Y
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. (contlnued)
The flrst time an edge (u, v) Is critical, we have 6(v) =
o(u) + 1, since p Is a breadth-first path. We must wait
until (v, u) I1s on an augmenting path before (u, v) can
be critical again. Let &’ be the distance function when
(v, u) Is on an augmenting path. Then, we have
o'(u) =0o'(v) +1  (breadth-first path)
>9(v) +1 (monotonicity)
=0(u) + 2 (breadth-first path).
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w= Counting flow augmentations
T
~* " (continued)

The flrst time an edge (u, v) Is critical, we have 6(v) =
o(u) + 1, since p Is a breadth-first path. We must wait
until (v, u) I1s on an augmenting path before (u, v) can
be critical again. Let &’ be the distance function when
(v, u) Is on an augmenting path. Then, we have
o'(u) =0o'(v) +1  (breadth-first path)
>9(v) +1 (monotonicity)
=0(u) + 2 (breadth-first path).

Example: o(U) =5

O Y

o(V) =6
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. (contlnued)
The flrst time an edge (u, v) Is critical, we have 6(v) =
o(u) + 1, since p Is a breadth-first path. We must wait
until (v, u) I1s on an augmenting path before (u, v) can
be critical again. Let &’ be the distance function when
(v, u) Is on an augmenting path. Then, we have
o'(u) =0o'(v) +1  (breadth-first path)
>9(v) +1 (monotonicity)
=0(u) + 2 (breadth-first path).

Example: 5(u) =7

_—
_—
_—
-—-
—

o(v) > 6
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w= Counting flow augmentations
T
~* " (continued)

The flrst time an edge (u, v) Is critical, we have 6(v) =
o(u) + 1, since p Is a breadth-first path. We must wait
until (v, u) I1s on an augmenting path before (u, v) can
be critical again. Let &’ be the distance function when
(v, u) Is on an augmenting path. Then, we have
o'(u) =0o'(v) +1  (breadth-first path)
>9(v) +1 (monotonicity)
=0(u) + 2 (breadth-first path).

Example: o(u) = 7

O Y

o(v) > 6
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. (contlnued)
The flrst time an edge (u, v) Is critical, we have 6(v) =
o(u) + 1, since p Is a breadth-first path. We must wait
until (v, u) I1s on an augmenting path before (u, v) can
be critical again. Let &’ be the distance function when
(v, u) Is on an augmenting path. Then, we have
o'(u) =0o'(v) +1  (breadth-first path)
>9(v) +1 (monotonicity)
=0(u) + 2 (breadth-first path).
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‘ Karp

Distances start out nonnegative, never decrease, and are
at most || — 1 until the vertex becomes unreachable.
Thus, (u, v) occurs as a critical edge O(|V|) times,
because (V) Increases by at least 2 between
occurrences. Since the residual graph contains O(|E|)

edges, the number of flow augmentations is O(|V| |E|).

Corollary. The Edmonds-Karp maximum-flow
algorithm runs in O(|V| |E|?) time.

Proof. Breadth-first search runs in O(|E|) time, and
all other bookkeeping is O(|\V|) per augmentation.
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Best to date

: The asymptotlcally fastest algorithm to date for
maximum flow, due to King, Rao, and Tarjan, runs
In O(IVIIE[ 10g&)4vi 10g vplV]) TIME.

* If we allow running times as a function of edge
welghts, the fastest algorithm for maximum flow,
due to Goldberg and Rao, runs in time

O(min{|V| 23, |E[¥2} - [E] log (VI Z|E| + 2) - log C),
where C Is the maximum capacity of any edge In
the graph.
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