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We have seen so far 

• Algorithms for various problems 

– Running times O(nm2),O(n2) ,O(n log n), 
O(n), etc. 

– I.e., polynomial in the input size 

• Can we solve all (or most of) interesting 
problems in polynomial time ? 

• Not really…  
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Example difficult problem 

• Traveling Salesperson 
Problem (TSP; 
optimization variant) 

– Input: Undirected graph 
with lengths on edges 

– Output: Shortest tour 
that visits each vertex 
exactly once 

• Best known algorithm:    
O(n 2n) time. 
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Another difficult problem 

• Clique (optimization variant): 

– Input: Undirected graph 
G=(V,E) 

– Output: Largest subset C of V 
such that every pair of vertices 
in C has an edge between them 
(C is called a clique) 

• Best known algorithm:   
O(n 2n) time 
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What can we do ? 

• Spend more time designing algorithms for those 
problems  

– People tried for a few decades, no luck 

• Prove there is no polynomial time algorithm for 
those problems 

– Would be great 

– Seems really difficult 

– Best lower bounds for “natural” problems: 

• (n2) for restricted computational models 

• 4.5n for unrestricted computational models 
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What else can we do ? 

• Show that those hard problems are 
essentially equivalent. I.e., if we can solve 
one of them in polynomial time, then all 
others can be solved in polynomial time as 
well. 

• Works for at least 10 000 hard problems 
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The benefits of equivalence 

• Combines research 
efforts 

• If one problem has a 
polynomial time 
solution, then all of 
them do 

• More realistically: 
Once an exponential  
lower bound is shown 
for one problem, it 
holds for all of them 
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Summing up 

• If we show that a problem ∏ is equivalent 
to ten thousand other well studied problems 
without efficient algorithms, then we get a 
very strong evidence that ∏ is hard.  

• We need to: 

– Identify the class of problems of interest 

– Define the notion of equivalence 

– Prove the equivalence(s) 
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Decision Problem 

• Decision problems: answer YES or NO.  

• Example: Search Problem PSearch 

    Given an unsorted set S of n numbers and a number 
key, is key contained in A? 

• Input is x=(S,key) 

• Possible algorithms that solve PSearch (x) : 

– A1(x): Linear search algorithm. O(n) time 

– A2(x): Sort the array and then perform binar 
search. O(n log n) time 

– A3(x): Compute all possible subsets of S (2n 
many) and check each subset if it contains key. 
O(n2n) time.  
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Decision problem vs. 
optimization problem 

3 variants of Clique: 

1. Input: Undirected graph G=(V,E), and an integer k ≥ 0. 
Output: Does G contain a clique C such that |C| ≥ k ?  

2. Input: Undirected graph G=(V,E) 
Output: Largest integer k such that G contains a clique C 
with |C|=k. 

3. Input: Undirected graph G=(V,E) 
Output: Largest clique C of V. 

3. is harder than 2. is harder than 1. So, if we reason 

about the decision problem (1.), and can show that it is 

hard, then the others are hard as well. Also, every 

algorithm for 3. can solve 2. and 1. as well. 
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Decision problem vs. 
optimization problem (cont.) 

Theorem: 

a) If 1. can be solved in polynomial time, then 2. can be solved in 
polynomial time. 

b) If 2. can be solved in polynomial time, then 3. can be solved in 
polynomial time. 

Proof: 

a) Run 1. for values k = 1... n. Instead of linear search one 

could also do binary search. 

b) Run 2. to find the size kopt of a largest clique in G. Now 

check one edge after the other. Remove one edge from 

G, compute the new size of the largest clique in this new 

graph. If it is still kopt then this edge is not necessary for 

a clique. If it is less than kopt then it is part of the clique. 
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Class of problems: NP 

• Decision problems: answer YES or NO. E.g.,”is 
there a tour of length ≤ K” ? 

• Solvable in non-deterministic polynomial time: 

– Intuitively: the solution can be verified in 
polynomial time 

– E.g., if someone gives us a tour T, we can 
verify in polynomial time if T is a tour of length 
≤ K. 

•  Therefore, the decision variant of TSP is in NP.  
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Formal definitions of P and NP 

• A decision problem ∏ is solvable in polynomial 
time (or ∏P), if there is a polynomial time 
algorithm A(.) such that for any input x: 

∏(x)=YES iff A(x)=YES 

 

• A decision problem ∏ is solvable in non-
deterministic polynomial time (or ∏NP), if there 
is a polynomial time algorithm A(. , .) such that for 
any input x: 

∏(x)=YES iff  there exists a certificate y of size 
poly(|x|) such that A(x,y)=YES 
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Examples of problems in NP 

• Is “Does there exist a clique in G of size ≥K” in 
NP ?  

   Yes: A(x,y) interprets x as a graph G, y as a set C, 
and checks if all vertices in C are adjacent and if 
|C|≥K 

• Is Sorting in NP ?  

   No, not a decision problem. 

• Is “Sortedness” in NP ? 

   Yes: ignore y, and check if the input x is sorted. 
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Reductions: ∏’ to ∏  

A for ∏ 

YES 

NO 

x 

A’ for ∏’ 

YES 

NO 

x’ 
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Reductions: ∏’ to ∏  

A for ∏ 

YES 

NO 

f 
f(x’)= 

A’ for ∏’ 

x 

YES 

NO 

x’ 
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Reductions 

• ∏’ is polynomial time reducible to ∏ ( ∏’ ≤ ∏ ) iff  

1. there is a polynomial time function f that maps 
inputs x’ for ∏’ into inputs x for ∏,  

2. such that for any x’: 

∏’(x’)=∏(f(x’)) 

(or in other words ∏’(x’)=YES iff ∏(f(x’)=YES) 

 

• Fact 1: if ∏P and ∏’ ≤ ∏ then ∏’P 

• Fact 2: if ∏NP and ∏’ ≤ ∏ then ∏’NP 

• Fact 3 (transitivity):  
 

      if ∏’’ ≤ ∏’ and ∏’ ≤ ∏ then ∏” ≤ ∏  
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Independent set (IS) 

• Input: Undirected graph 
G=(V,E), K 

• Output: Is there a subset S 
of V, |S|≥K such that no pair 
of vertices in S has an edge 
between them? (S is called 
an independent set) 
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Clique ≤ IS 

• Given an input G=(V,E), K to 
Clique, need to construct an 
input G’=(V’,E’), K’ to IS, 
 
 
such that G has clique of size 
≥K iff G’ has IS of size ≥K’. 

• Construction: K’=K,V’=V,E’=E 

• Reason: C is a clique in G iff it 
is an IS in G’s complement.  

x’ 

f(x’)=x 
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Recap 

• We defined a large class of interesting 
problems, namely NP 

• We have a way of saying that one problem 
is not harder than another (∏’ ≤ ∏) 

• Our goal: show equivalence between hard 
problems 
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 Showing equivalence between 
difficult problems 

TSP 

P3 P4 

Clique 

P5 

• Options: 

– Show reductions between all 
pairs of problems 

– Reduce the number of 
reductions using transitivity 
of “≤” 

∏’ 
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 Showing equivalence between 
difficult problems 

TSP 

P3 P4 

Clique 

P5 

• Options: 

– Show reductions between all 
pairs of problems 

– Reduce the number of 
reductions using transitivity 
of “≤” 

– Show that all problems in NP 
are reducible to a fixed ∏.  
 
To show that some                         
problem ∏’NP is equivalent 
to all difficult problems, we  
 

only show ∏ ≤ ∏’. 

 

∏ 

∏’ 
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The first problem ∏ 

• Satisfiability problem (SAT): 

– Given: a formula φ with m clauses over n 
variables, e.g.,    x1v x2 v x5 , x3 v ¬ x5 

– Check if there exists TRUE/FALSE 
assignments to the variables that makes 
the formula satisfiable 
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SAT is NP-complete 

• Fact: SAT NP  

• Theorem [Cook’71]: For any ∏’NP , 
we have ∏’ ≤ SAT. 

• Definition: A problem ∏ such that for any 
∏’NP  we have ∏’ ≤ ∏, is called NP-hard    

• Definition: An NP-hard problem that 
belongs to NP is called NP-complete 

• Corollary: SAT is NP-complete. 
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Plan of attack: 

SAT 

Clique 

Vertex cover 

Independent set 

Conclusion: all of the above problems are NP-

complete 

Follow from Cook’s Theorem 

(thanks, Steve  ) 
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Clique again 

• Clique (decision variant): 

– Input: Undirected graph 
G=(V,E), and an integer K≥0 

– Output: Is there a clique C, 
i.e., a subset C of V such that 
every pair of vertices in C has 
an edge between them, such 
that |C|≥K ? 
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SAT ≤ Clique 

• Given a SAT formula φ=C1,…,Cm over 
x1,…,xn, we need to produce  
            G=(V,E) and K,  
 
 
such that φ satisfiable iff G has a clique of 
size ≥ K. 

• Notation: a literal is either xi or ¬xi 

x’ 

f(x’)=x 
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SAT ≤ Clique reduction  

• For each literal t occurring in φ, create a 
vertex vt 

• Create an edge vt – vt’ iff: 

– t and t’  are not in the same clause, and 

– t is not the negation of t’ 
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SAT ≤ Clique example 

• Formula: x1v x2 v x3 , ¬ x2 v ¬ x3, ¬ x1 v x2 

• Graph: 

x1 

x2 

x3 

¬x2 

¬ x1 

¬ x3 

x2 

• Claim: φ satisfiable iff G has a clique of 
size ≥ m 

• t and t’  are not in the same clause, and 

• t is not the negation of t’ 
Edge vt – vt’  
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Proof 

• “→” part: 

– Take any assignment that 
satisfies φ. 

   E.g., x1=F, x2=T, x3=F 

– Let the set C contain one 
satisfied literal per clause 

– C is a clique 

x1 

x2 

x3 

¬x2 

¬ x1 

¬ x3 

x2 

• t and t’  are not in the same clause, and 

• t is not the negation of t’ 
Edge vt – vt’  
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Proof 

• “←” part: 

– Take any clique C of size ≥ m  
(i.e., = m)  

– Create a set of equations that 
satisfies selected literals. 

   E.g., x3=T, x2=F, x1=F 

– The set of equations is 
consistent and the solution 
satisfies φ 

x1 

x2 

x3 

¬x2 

¬ x1 

¬ x3 

x2 

• t and t’  are not in the same clause, and 

• t is not the negation of t’ 
Edge vt – vt’  
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Altogether 

• We constructed a reduction that maps: 

– YES inputs to SAT to YES inputs to 
Clique 

– NO inputs to SAT to NO inputs to Clique 

• The reduction works in polynomial time 

• Therefore, SAT ≤ Clique →Clique NP-hard  

• Clique is in NP → Clique is NP-complete 
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Independent set (IS) 

• Input: Undirected graph 
G=(V,E), K 

• Output: Is there a subset S 
of V, |S|≥K such that no pair 
of vertices in S has an edge 
between them? (S is called 
an independent set) 
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Clique ≤ IS 

• Given an input G=(V,E), K to 
Clique, need to construct an 
input G’=(V’,E’), K’ to IS, 
 
 
such that G has clique of size 
≥K iff G’ has IS of size ≥K’. 

• Construction: K’=K,V’=V,E’=E 

• Reason: C is a clique in G iff it 
is an IS in G’s complement.  

x’ 

f(x’)=x 
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Vertex cover (VC) 

• Input: undirected graph 
G=(V,E), and K≥0 

• Output: is there a subset C 
of V, |C| ≤ K, such that each 
edge in E is incident to at 
least one vertex in C. 
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IS ≤ VC 

• Given an input G=(V,E), K to IS, 
need to construct an input 
G’=(V’,E’), K’ to VC, such that 
 
 
G has an IS of size ≥K iff G’ has VC 
of size ≤K’. 

• Construction: V’=V, E’=E, K’=|V|-K 

• Reason: S is an IS in G iff V-S is a 
VC in G.  

x’ 

f(x’)=x 


