
4/10/12 CS 3343 Analysis of Algorithms 1

CS5633 – Spring 2012

P and NP
Carola Wenk

Slides courtesy of Piotr Indyk with small changes
by Carola Wenk

4/10/12 CS 3343 Analysis of Algorithms 2

We have seen so far

• Algorithms for various problems

– Running times O(nm2),O(n2) ,O(n log n),
O(n), etc.

– I.e., polynomial in the input size

• Can we solve all (or most of) interesting
problems in polynomial time ?

• Not really…

4/10/12 CS 3343 Analysis of Algorithms 3

Example difficult problem

• Traveling Salesperson
Problem (TSP;
optimization variant)

– Input: Undirected graph
with lengths on edges

– Output: Shortest tour
that visits each vertex
exactly once

• Best known algorithm:
O(n 2n) time.

5

9

8
10

4

5

3

2

9

11

6

7

4/10/12 CS 3343 Analysis of Algorithms 4

Another difficult problem

• Clique (optimization variant):

– Input: Undirected graph
G=(V,E)

– Output: Largest subset C of V
such that every pair of vertices
in C has an edge between them
(C is called a clique)

• Best known algorithm:
O(n 2n) time

4/10/12 CS 3343 Analysis of Algorithms 5

What can we do ?

• Spend more time designing algorithms for those
problems

– People tried for a few decades, no luck

• Prove there is no polynomial time algorithm for
those problems

– Would be great

– Seems really difficult

– Best lower bounds for “natural” problems:

• (n2) for restricted computational models

• 4.5n for unrestricted computational models

4/10/12 CS 3343 Analysis of Algorithms 6

What else can we do ?

• Show that those hard problems are
essentially equivalent. I.e., if we can solve
one of them in polynomial time, then all
others can be solved in polynomial time as
well.

• Works for at least 10 000 hard problems

4/10/12 CS 3343 Analysis of Algorithms 7

The benefits of equivalence

• Combines research
efforts

• If one problem has a
polynomial time
solution, then all of
them do

• More realistically:
Once an exponential
lower bound is shown
for one problem, it
holds for all of them

P1

P2

P3

4/10/12 CS 3343 Analysis of Algorithms 8

Summing up

• If we show that a problem ∏ is equivalent
to ten thousand other well studied problems
without efficient algorithms, then we get a
very strong evidence that ∏ is hard.

• We need to:

– Identify the class of problems of interest

– Define the notion of equivalence

– Prove the equivalence(s)

4/10/12 CS 3343 Analysis of Algorithms 9

Decision Problem

• Decision problems: answer YES or NO.

• Example: Search Problem PSearch

 Given an unsorted set S of n numbers and a number
key, is key contained in A?

• Input is x=(S,key)

• Possible algorithms that solve PSearch (x) :

– A1(x): Linear search algorithm. O(n) time

– A2(x): Sort the array and then perform binar
search. O(n log n) time

– A3(x): Compute all possible subsets of S (2n
many) and check each subset if it contains key.
O(n2n) time.

4/10/12 CS 3343 Analysis of Algorithms 10

Decision problem vs.
optimization problem

3 variants of Clique:

1. Input: Undirected graph G=(V,E), and an integer k ≥ 0.
Output: Does G contain a clique C such that |C| ≥ k ?

2. Input: Undirected graph G=(V,E)
Output: Largest integer k such that G contains a clique C
with |C|=k.

3. Input: Undirected graph G=(V,E)
Output: Largest clique C of V.

3. is harder than 2. is harder than 1. So, if we reason

about the decision problem (1.), and can show that it is

hard, then the others are hard as well. Also, every

algorithm for 3. can solve 2. and 1. as well.

4/10/12 CS 3343 Analysis of Algorithms 11

Decision problem vs.
optimization problem (cont.)

Theorem:

a) If 1. can be solved in polynomial time, then 2. can be solved in
polynomial time.

b) If 2. can be solved in polynomial time, then 3. can be solved in
polynomial time.

Proof:

a) Run 1. for values k = 1... n. Instead of linear search one

could also do binary search.

b) Run 2. to find the size kopt of a largest clique in G. Now

check one edge after the other. Remove one edge from

G, compute the new size of the largest clique in this new

graph. If it is still kopt then this edge is not necessary for

a clique. If it is less than kopt then it is part of the clique.

4/10/12 CS 3343 Analysis of Algorithms 12

Class of problems: NP

• Decision problems: answer YES or NO. E.g.,”is
there a tour of length ≤ K” ?

• Solvable in non-deterministic polynomial time:

– Intuitively: the solution can be verified in
polynomial time

– E.g., if someone gives us a tour T, we can
verify in polynomial time if T is a tour of length
≤ K.

• Therefore, the decision variant of TSP is in NP.

4/10/12 CS 3343 Analysis of Algorithms 13

Formal definitions of P and NP

• A decision problem ∏ is solvable in polynomial
time (or ∏P), if there is a polynomial time
algorithm A(.) such that for any input x:

∏(x)=YES iff A(x)=YES

• A decision problem ∏ is solvable in non-
deterministic polynomial time (or ∏NP), if there
is a polynomial time algorithm A(. , .) such that for
any input x:

∏(x)=YES iff there exists a certificate y of size
poly(|x|) such that A(x,y)=YES

4/10/12 CS 3343 Analysis of Algorithms 14

Examples of problems in NP

• Is “Does there exist a clique in G of size ≥K” in
NP ?

 Yes: A(x,y) interprets x as a graph G, y as a set C,
and checks if all vertices in C are adjacent and if
|C|≥K

• Is Sorting in NP ?

 No, not a decision problem.

• Is “Sortedness” in NP ?

 Yes: ignore y, and check if the input x is sorted.

4/10/12 CS 3343 Analysis of Algorithms 15

Reductions: ∏’ to ∏

A for ∏

YES

NO

x

A’ for ∏’

YES

NO

x’

4/10/12 CS 3343 Analysis of Algorithms 16

Reductions: ∏’ to ∏

A for ∏

YES

NO

f
f(x’)=

A’ for ∏’

x

YES

NO

x’

4/10/12 CS 3343 Analysis of Algorithms 17

Reductions

• ∏’ is polynomial time reducible to ∏ (∏’ ≤ ∏) iff

1. there is a polynomial time function f that maps
inputs x’ for ∏’ into inputs x for ∏,

2. such that for any x’:

∏’(x’)=∏(f(x’))

(or in other words ∏’(x’)=YES iff ∏(f(x’)=YES)

• Fact 1: if ∏P and ∏’ ≤ ∏ then ∏’P

• Fact 2: if ∏NP and ∏’ ≤ ∏ then ∏’NP

• Fact 3 (transitivity):

 if ∏’’ ≤ ∏’ and ∏’ ≤ ∏ then ∏” ≤ ∏

4/10/12 CS 3343 Analysis of Algorithms 18

Independent set (IS)

• Input: Undirected graph
G=(V,E), K

• Output: Is there a subset S
of V, |S|≥K such that no pair
of vertices in S has an edge
between them? (S is called
an independent set)

4/10/12 CS 3343 Analysis of Algorithms 19

Clique ≤ IS

• Given an input G=(V,E), K to
Clique, need to construct an
input G’=(V’,E’), K’ to IS,

such that G has clique of size
≥K iff G’ has IS of size ≥K’.

• Construction: K’=K,V’=V,E’=E

• Reason: C is a clique in G iff it
is an IS in G’s complement.

x’

f(x’)=x

4/10/12 CS 3343 Analysis of Algorithms 20

Recap

• We defined a large class of interesting
problems, namely NP

• We have a way of saying that one problem
is not harder than another (∏’ ≤ ∏)

• Our goal: show equivalence between hard
problems

4/10/12 CS 3343 Analysis of Algorithms 21

 Showing equivalence between
difficult problems

TSP

P3 P4

Clique

P5

• Options:

– Show reductions between all
pairs of problems

– Reduce the number of
reductions using transitivity
of “≤”

∏’

4/10/12 CS 3343 Analysis of Algorithms 22

 Showing equivalence between
difficult problems

TSP

P3 P4

Clique

P5

• Options:

– Show reductions between all
pairs of problems

– Reduce the number of
reductions using transitivity
of “≤”

– Show that all problems in NP
are reducible to a fixed ∏.

To show that some
problem ∏’NP is equivalent
to all difficult problems, we

only show ∏ ≤ ∏’.

∏

∏’

4/10/12 CS 3343 Analysis of Algorithms 23

The first problem ∏

• Satisfiability problem (SAT):

– Given: a formula φ with m clauses over n
variables, e.g., x1v x2 v x5 , x3 v ¬ x5

– Check if there exists TRUE/FALSE
assignments to the variables that makes
the formula satisfiable

4/10/12 CS 3343 Analysis of Algorithms 24

SAT is NP-complete

• Fact: SAT NP

• Theorem [Cook’71]: For any ∏’NP ,
we have ∏’ ≤ SAT.

• Definition: A problem ∏ such that for any
∏’NP we have ∏’ ≤ ∏, is called NP-hard

• Definition: An NP-hard problem that
belongs to NP is called NP-complete

• Corollary: SAT is NP-complete.

4/10/12 CS 3343 Analysis of Algorithms 25

Plan of attack:

SAT

Clique

Vertex cover

Independent set

Conclusion: all of the above problems are NP-

complete

Follow from Cook’s Theorem

(thanks, Steve)

4/10/12 CS 3343 Analysis of Algorithms 26

Clique again

• Clique (decision variant):

– Input: Undirected graph
G=(V,E), and an integer K≥0

– Output: Is there a clique C,
i.e., a subset C of V such that
every pair of vertices in C has
an edge between them, such
that |C|≥K ?

4/10/12 CS 3343 Analysis of Algorithms 27

SAT ≤ Clique

• Given a SAT formula φ=C1,…,Cm over
x1,…,xn, we need to produce
 G=(V,E) and K,

such that φ satisfiable iff G has a clique of
size ≥ K.

• Notation: a literal is either xi or ¬xi

x’

f(x’)=x

4/10/12 CS 3343 Analysis of Algorithms 28

SAT ≤ Clique reduction

• For each literal t occurring in φ, create a
vertex vt

• Create an edge vt – vt’ iff:

– t and t’ are not in the same clause, and

– t is not the negation of t’

4/10/12 CS 3343 Analysis of Algorithms 29

SAT ≤ Clique example

• Formula: x1v x2 v x3 , ¬ x2 v ¬ x3, ¬ x1 v x2

• Graph:

x1

x2

x3

¬x2

¬ x1

¬ x3

x2

• Claim: φ satisfiable iff G has a clique of
size ≥ m

• t and t’ are not in the same clause, and

• t is not the negation of t’
Edge vt – vt’

4/10/12 CS 3343 Analysis of Algorithms 30

Proof

• “→” part:

– Take any assignment that
satisfies φ.

 E.g., x1=F, x2=T, x3=F

– Let the set C contain one
satisfied literal per clause

– C is a clique

x1

x2

x3

¬x2

¬ x1

¬ x3

x2

• t and t’ are not in the same clause, and

• t is not the negation of t’
Edge vt – vt’

4/10/12 CS 3343 Analysis of Algorithms 31

Proof

• “←” part:

– Take any clique C of size ≥ m
(i.e., = m)

– Create a set of equations that
satisfies selected literals.

 E.g., x3=T, x2=F, x1=F

– The set of equations is
consistent and the solution
satisfies φ

x1

x2

x3

¬x2

¬ x1

¬ x3

x2

• t and t’ are not in the same clause, and

• t is not the negation of t’
Edge vt – vt’

4/10/12 CS 3343 Analysis of Algorithms 32

Altogether

• We constructed a reduction that maps:

– YES inputs to SAT to YES inputs to
Clique

– NO inputs to SAT to NO inputs to Clique

• The reduction works in polynomial time

• Therefore, SAT ≤ Clique →Clique NP-hard

• Clique is in NP → Clique is NP-complete

4/10/12 CS 3343 Analysis of Algorithms 33

Independent set (IS)

• Input: Undirected graph
G=(V,E), K

• Output: Is there a subset S
of V, |S|≥K such that no pair
of vertices in S has an edge
between them? (S is called
an independent set)

4/10/12 CS 3343 Analysis of Algorithms 34

Clique ≤ IS

• Given an input G=(V,E), K to
Clique, need to construct an
input G’=(V’,E’), K’ to IS,

such that G has clique of size
≥K iff G’ has IS of size ≥K’.

• Construction: K’=K,V’=V,E’=E

• Reason: C is a clique in G iff it
is an IS in G’s complement.

x’

f(x’)=x

4/10/12 CS 3343 Analysis of Algorithms 35

Vertex cover (VC)

• Input: undirected graph
G=(V,E), and K≥0

• Output: is there a subset C
of V, |C| ≤ K, such that each
edge in E is incident to at
least one vertex in C.

4/10/12 CS 3343 Analysis of Algorithms 36

IS ≤ VC

• Given an input G=(V,E), K to IS,
need to construct an input
G’=(V’,E’), K’ to VC, such that

G has an IS of size ≥K iff G’ has VC
of size ≤K’.

• Construction: V’=V, E’=E, K’=|V|-K

• Reason: S is an IS in G iff V-S is a
VC in G.

x’

f(x’)=x

