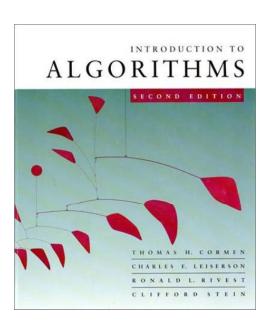


CS 5633 -- Spring 2012



Union-Find Data Structures

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Disjoint-set data structure (Union-Find)

Problem:

- Maintain a dynamic collection of *pairwise-disjoint* sets $S = \{S_1, S_2, ..., S_r\}.$
- Each set S_i has one element distinguished as the representative element, $rep[S_i]$.
- Must support 3 operations:
 - Make-Set(x): adds new set {x} to 5 with $rep[\{x\}] = x$ (for any $x \notin S_i$ for all i)
 - Union(x, y): replaces sets S_x , S_y with $S_x \cup S_y$ in S_y (for any x, y in distinct sets S_x , S_y)
 - FIND-SET(x): returns representative $rep[S_x]$ of set S_r containing element x

Union-Find Example

MAKE-SET(2)
-----------	----

$$FIND-SET(4) = 4$$

$$U_{NION}(2, 4)$$

$$FIND-SET(4) = 2$$

Union
$$(4, 5)$$

The representative is underlined

$$S = \{\{2\}\}$$

$$S = \{\{\underline{2}\}, \{\underline{3}\}\}$$

$$S = \{\{\underline{2}\}, \{\underline{3}\}, \{\underline{4}\}\}$$

$$S = \{\{\underline{2}, 4\}, \{\underline{3}\}\}$$

$$S = \{\{\underline{2}, 4\}, \{\underline{3}\}, \{\underline{5}\}\}$$

$$S = \{\{\underline{2}, 4, 5\}, \{\underline{3}\}\}$$

Application: Dynamic connectivity

Suppose a graph is given to us *incrementally* by

- ADD-VERTEX(ν)
- ADD-EDGE(u, v)

and we want to support connectivity queries:

• Connected(u, v):

Are u and v in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.

Application: Dynamic connectivity

Sets of vertices represent connected components. Suppose a graph is given to us *incrementally* by

- ADD-VERTEX(v): MAKE-SET(v)
- ADD-EDGE(u, v): if not Connected(u, v) then Union(u, v)

and we want to support connectivity queries:

• Connected (u, v): Find-Set(u) = Find-Set(v) Are u and v in the same connected component?

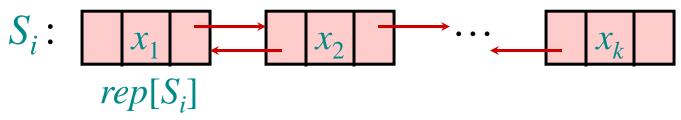
For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.

Disjoint-set data structure (Union-Find) II

- In all operations pointers to the elements x, y in the data structure are given.
- Hence, we do not need to first search for the element in the data structure.
- Let *n* denote the overall number of elements (equivalently, the number of MAKE-SET operations).

Simple linked-list solution

Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as an (unordered) doubly linked list. Define representative element $rep[S_i]$ to be the front of the list, x_1 .



- $\Theta(1)$ Make-Set(x) initializes x as a lone node.
- FIND-SET(x) walks left in the list containing x until it reaches the front of the list.
- UNION(x, y) calls FIND-SET on y, finds the last element of list x, and concatenates both lists, leaving rep. as FIND-SET[x].

Simple balanced-tree solution

maintain how?

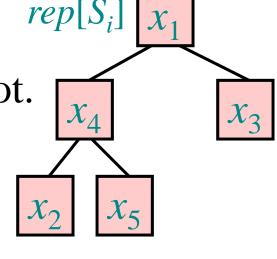
Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as a balanced tree (ignoring keys). Define representative element $rep[S_i]$ to be the root of the tree.

 $\Theta(1)$ MAKE-SET(x) initializes x as a lone node.

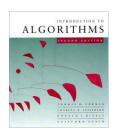
FIND-SET(x) walks up the tree containing x until reaching root.

• UNION(x, y) calls FIND-SET on y, finds a leaf of x and concatenates both trees, changing rep. of y

 $S_i - \{x_1, x_2, x_3, x_4, x_5\}$



How?

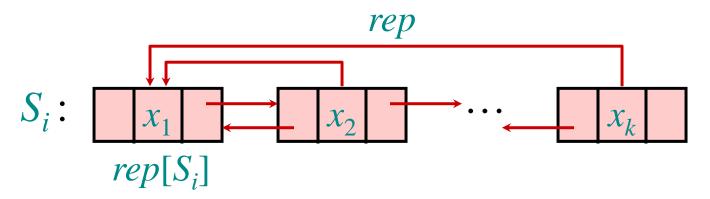


Plan of attack

- We will build a simple disjoint-union data structure that, in an **amortized sense**, performs significantly better than $\Theta(\log n)$ per op., even better than $\Theta(\log \log n)$, $\Theta(\log \log \log n)$, ..., but not quite $\Theta(1)$.
- To reach this goal, we will introduce two key *tricks*. Each trick converts a trivial $\Theta(n)$ solution into a simple $\Theta(\log n)$ amortized solution. Together, the two tricks yield a much better solution.
- First trick arises in an augmented linked list. Second trick arises in a tree structure.

Augmented linked-list solution

Store $S_i = \{x_1, x_2, ..., x_k\}$ as unordered doubly linked list. **Augmentation:** Each element x_j also stores pointer $rep[x_i]$ to $rep[S_i]$ (which is the front of the list, x_1).

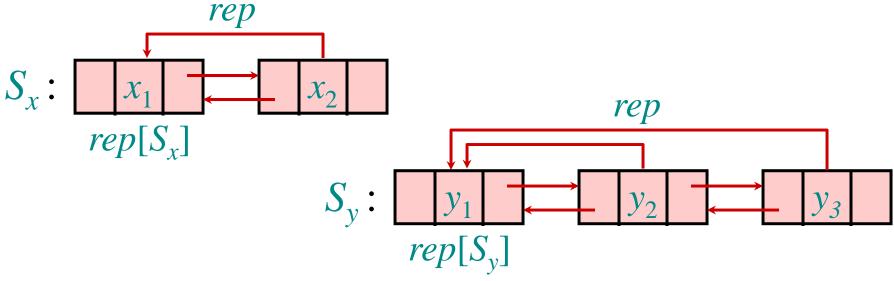


- FIND-SET(x) returns rep[x].
- Union(x, y) concatenates lists containing x and y and updates the *rep* pointers for all elements in the list containing y.

Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$. UNION(x, y)

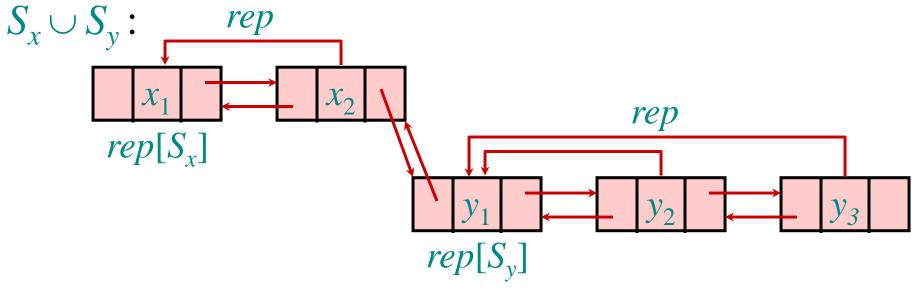
- concatenates the lists containing x and y, and
- updates the *rep* pointers for all elements in the list containing y.



Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$. UNION(x, y)

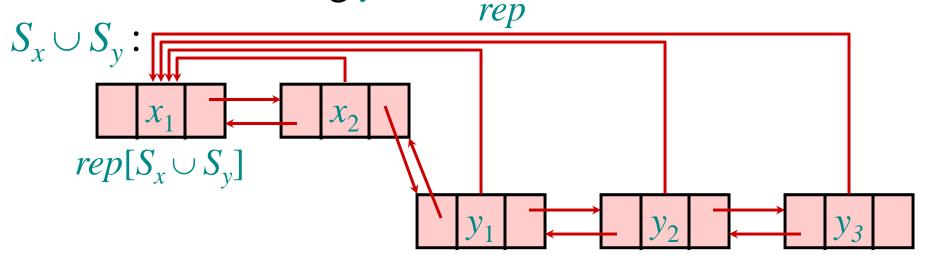
- concatenates the lists containing x and y, and
- updates the *rep* pointers for all elements in the list containing y.



Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$. UNION(x, y)

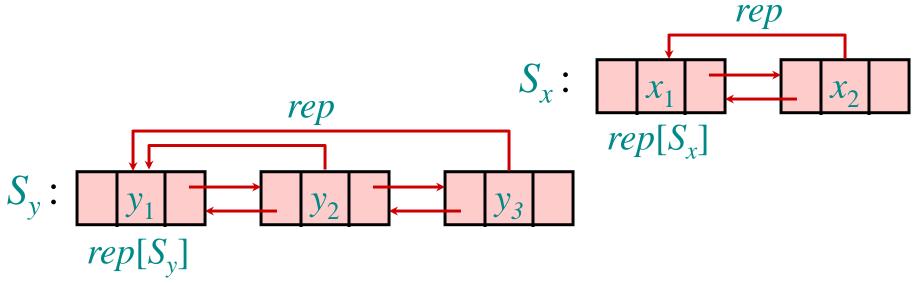
- concatenates the lists containing x and y, and
- updates the *rep* pointers for all elements in the list containing y.



Alternative concatenation

$U_{NION}(x, y)$ could instead

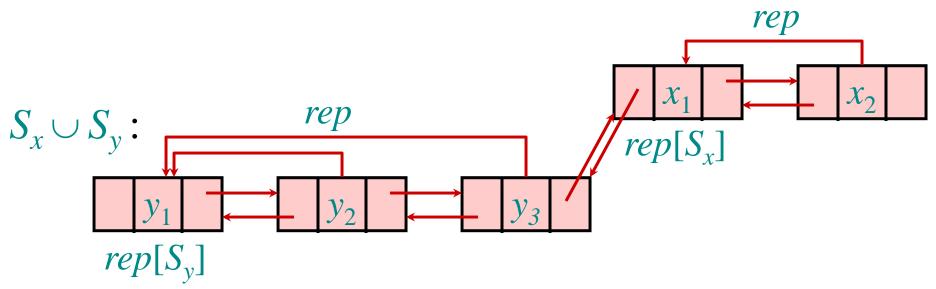
- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.



Alternative concatenation

$U_{NION}(x, y)$ could instead

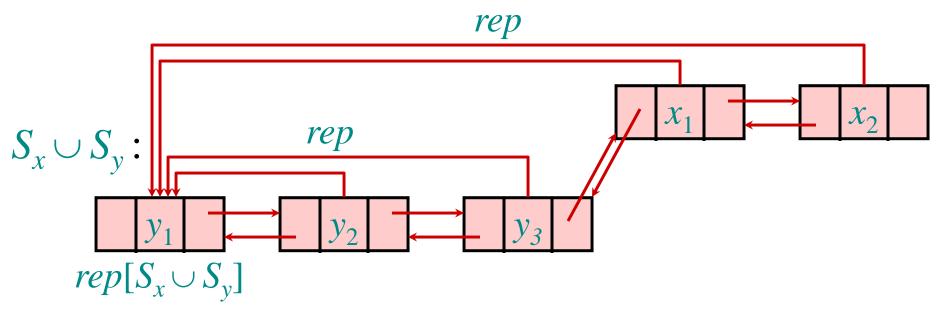
- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.



Alternative concatenation

$U_{NION}(x, y)$ could instead

- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.





Trick 1: Smaller into larger

(weighted-union heuristic)

To save work, concatenate the smaller list onto the end of the larger list. $Cost = \Theta(length \ of \ smaller \ list)$. Augment list to store its *weight* (# elements).

- Let *n* denote the overall number of elements (equivalently, the number of MAKE-SET operations).
- Let *m* denote the total number of operations.
- Let *f* denote the number of FIND-SET operations.

Theorem: Cost of all Union's is $O(n \log n)$.

Corollary: Total cost is $O(m + n \log n)$.

Analysis of Trick 1

(weighted-union heuristic)

Theorem: Total cost of Union's is $O(n \log n)$.

Proof. • Monitor an element x and set S_x containing it.

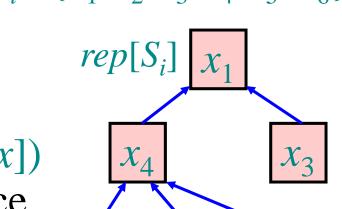
- After initial MAKE-SET(x), weight[S_x] = 1.
- Each time S_x is united with S_y :
 - if $weight[S_y] \ge weight[S_x]$:
 - pay 1 to update rep[x], and
 - $-weight[S_x]$ at least doubles (increases by $weight[S_y]$).
 - if $weight[S_y] < weight[S_x]$:
 - pay nothing, and
 - $-weight[S_x]$ only increases.

Thus pay $\leq \log n$ for x.

Disjoint set forest: Representing sets as trees

Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as an unordered, potentially unbalanced, not necessarily binary tree, storing only *parent* pointers. $rep[S_i]$ is the tree root.

- Make-Set(x) initializes x as a lone node. $-\Theta(1)$
- FIND-SET(x) walks up the tree containing x until it reaches the root. $-\Theta(depth[x])$
- UNION(x, y) calls FIND-SET twice and concatenates the trees containing x and y...— $\Theta(depth[x])$



 $S_i = \{x_1, x_2, x_3, x_4, x_5, x_6\}$

Trick 1 adapted to trees

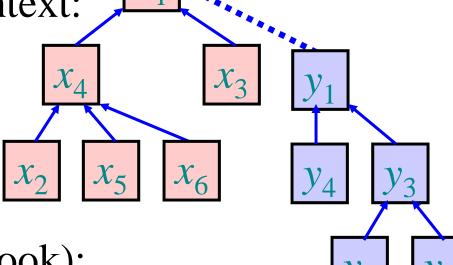
• Union(x, y) can use a simple concatenation strategy: Make root Find-Set(y) a child of root Find-Set(x).

 \Rightarrow FIND-SET(y) = FIND-SET(x).

Adapt Trick 1 to this context:

Union-by-weight:

Merge tree with smaller weight into tree with larger weight.



• Variant of Trick 1 (see book):

Union-by-rank:

rank of a tree = its height

Trick 1 adapted to trees (union-by-weight)

- Height of tree is logarithmic in weight, because:
 - Induction on *n*
 - Height of a tree T is determined by the two subtrees T_1 , T_2 that T has been united from.
 - Inductively the heights of T_1 , T_2 are the logs of their weights.
 - If T_1 and T_2 have different heights:

```
height(T) - max(height(T_1), height(T_2))
= max(log weight(T_1), log weight(T_2))
< log weight(T)
```

• If T_1 and T_2 have the same heights:

(Assume
$$2 \le \text{weight}(T_1) < \text{weight}(T_2)$$
)
height(T_1) = height(T_1) + 1 = log ($2 * \text{weight}(T_1)$)

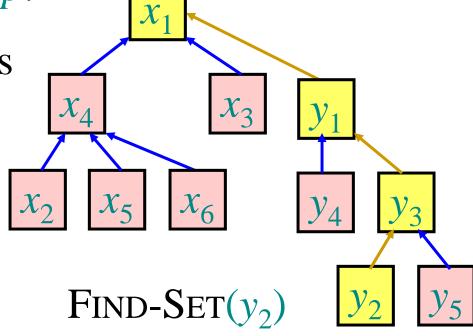
• Thus the total cost of any m operations is $O(m \log n)$.

When we execute a FIND-SET operation and walk up a path *p* to the root, we know the representative

for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

Cost of FIND-SET(x) is still $\Theta(depth[x])$.



When we execute a FIND-SET operation and walk up a path *p* to the root, we know the representative

for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

Cost of FIND-SET(x) is still $\Theta(depth[x])$.

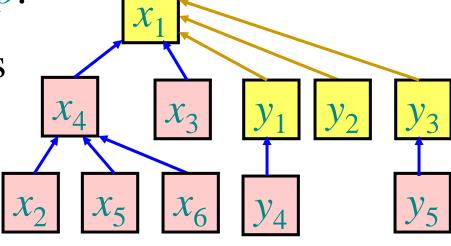


When we execute a FIND-SET operation and walk up a path *p* to the root, we know the representative

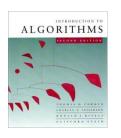
for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

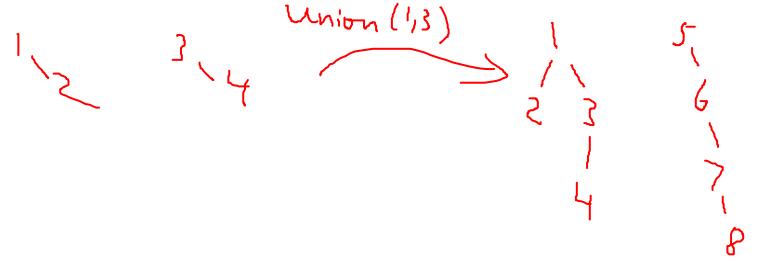
Cost of FIND-SET(x) is still $\Theta(depth[x])$.



FIND-SET (y_2)

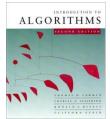


• Note that UNION(x,y) first calls FIND-SET(x) and FIND-SET(y). Therefore path compression also affects UNION operations.



Analysis of Trick 2 alone

Theorem: Total cost of FIND-SET's is $O(m \log n)$. *Proof:* By amortization. Omitted.

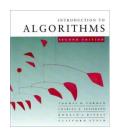


Ackermann's function A, and it's "inverse" α

Define
$$A_k(j) = \begin{cases} j+1 & \text{if } k = 0, \\ A_{k-1}^{(j+1)}(j) & \text{if } k \geq 1. \end{cases}$$
 — iterate $j+1$ times

$$A_{0}(j) = j + 1
A_{1}(j) \sim 2j
A_{2}(j) \sim 2j 2^{j} > 2^{j}
A_{2}(1) = 7
A_{3}(1) = 2047
A_{3}(1) = 2047
A_{4}(j) is a lot bigger. A_{4}(1) > 2
$$A_{4}(1) = 2047
A_{3}(1) = 2047
A_{4}(1) > 2
A_{4}(1) > 2
A_{4}(1) > 2
A_{5}(1) = 2
A_{4}(1) > 2
A_{5}(1) = 2
A_{4}(1) > 2
A_{5}(1) = 2
A_{6}(1) = 2
A_{7}(1) = 2
A_{7}(1) = 2
A_{8}(1) = 2
A_{7}(1) = 2
A_{8}(1) = 2
A_{7}(1) = 2
A_{8}(1) = 2
A_{8}$$$$

Define
$$\alpha(n) = \min \{k : A_k(1) \ge n\} \le 4 \text{ for practical } n.$$



Analysis of Tricks 1 + 2 for disjoint-set forests

Theorem: In general, total cost is $O(m \alpha(n))$.

(long, tricky proof – see Section 21.4 of CLRS)