CS 5633 - Spring 2012

More on Shortest Paths Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Negative-weight cycles

Recall: If a graph $G=(V, E)$ contains a negativeweight cycle, then some shortest paths may not exist. Example:

Bellman-Ford algorithm: Finds all shortest-path weights from a source $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

Bellman-Ford algorithm

$d[s] \leftarrow 0$
for each $v \in V-\{s\} \quad$ initialization do $d[v] \leftarrow \infty$
for $i \leftarrow 1$ to $|V|-1$ do for each edge $(u, v) \in E$ do if $d[v]>d[u]+w(u, v)$ then relaxation $d[\nu] \leftarrow d[u]+w(u, v)$
$\pi[v]$$\leftarrow$ step
for each edge $(u, v) \in E$
do if $d[v]>d[u]+w(u, v)$
then report that a negative-weight cycle exists At the end, $d[v]=\delta(s, v)$. Time $=O(|V||E|)$.

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

A	B	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1
0	-1	2	1	1
0	-1	2	-2	1

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

Note: Values decrease monotonically.

A	B	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1
0	-1	2	1	1
0	-1	2	-2	1

\ldots and 2 more iterations

Correctness

Theorem. If $G=(V, E)$ contains no negativeweight cycles, then after the Bellman-Ford algorithm executes, $d[v]=\delta(s, v)$ for all $v \in V$.
Proof. Let $v \in V$ be any vertex, and consider a shortest path p from s to v with the minimum number of edges.

Since p is a shortest path, we have

$$
\delta\left(s, v_{i}\right)=\delta\left(s, v_{i-1}\right)+w\left(v_{i-1}, v_{i}\right) .
$$

Correctness (continued)

Initially, $d\left[v_{0}\right]=0=\delta\left(s, v_{0}\right)$, and $d[s]$ is unchanged by subsequent relaxations.

- After 1 pass through E, we have $d\left[v_{1}\right]=\delta\left(s, v_{1}\right)$.
- After 2 passes through E, we have $d\left[v_{2}\right]=\delta\left(s, v_{2}\right)$.
- After k passes through E, we have $d\left[v_{k}\right]=\delta\left(s, v_{k}\right)$. Since G contains no negative-weight cycles, p is simple. Longest simple path has $\leq|V|-1$ edges. \square

Corollary. If a value $d[v]$ fails to converge after $|V|-1$ passes, there exists a negative-weight cycle in G reachable from s. \square

DAG shortest paths

If the graph is a directed acyclic graph (DAG), we first topologically sort the vertices.

- Determine $f: V \rightarrow\{1,2, \ldots,|V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u)<f(v)$.

DAG shortest paths

If the graph is a directed acyclic graph (DAG), we first topologically sort the vertices.

- Determine $f: V \rightarrow\{1,2, \ldots,|V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u)<f(v)$.
- $O(|V|+|E|)$ time

- Walk through the vertices $u \in V$ in this order, relaxing the edges in $A d j[u]$, thereby obtaining the shortest paths from s in a total of $O(|V|+|E|)$ time.

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
- Dijkstra's algorithm: $O(|E| \log |V|)$
- General: Bellman-Ford: $O(|V||E|)$
- DAG: One pass of Bellman-Ford: $O(|V|+|E|)$

All-pairs shortest paths

- Nonnegative edge weights
- Dijkstra's algorithm $|V|$ times: $O(|V||E| \log |V|)$
- General
- Bellman-Ford $|V|$ times: $\mathrm{O}\left(|V|{ }^{2}|E|\right)$
- Floyd-Warshall: $\mathrm{O}\left(|V|^{3}\right)$

All-pairs shortest paths

Input: Digraph $G=(V, E)$, where $|V|=n$, with edge-weight function $w: E \rightarrow \mathrm{R}$.
Output: $n \times n$ matrix of shortest-path lengths
$\delta(i, j)$ for all $i, j \in V$.
Algorithm \#1:

- Run Bellman-Ford once from each vertex.
- Time $=\mathrm{O}\left(|V|^{2}|E|\right)$.
- But: Dense graph $\Rightarrow \mathrm{O}\left(|V|^{4}\right)$ time.

Floyd-Warshall algorithm

- Dynamic programming algorithm.
- Assume $V=\{1,2, \ldots, n\}$, and assume G is given in an adjacency matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ where $a_{i j}$ is the weight of the edge from i to j.
Define $c_{i j}{ }^{(k)}=$ weight of a shortest path from i to j with intermediate vertices belonging to the set $\{1,2, \ldots, k\}$.

Thus, $\delta(i, j)=c_{i j}{ }^{(n)}$. Also, $c_{i j}{ }^{(0)}=a_{i j}$.

Floyd-Warshall recurrence

$$
c_{i j}^{(k)}=\min \left\{c_{i j}^{(k-1)}, c_{i k}^{(k-1)}+c_{k j}^{(k-1)}\right\}
$$

Do not use vertex k

intermediate vertices in $\{1,2, \ldots, k-1\}$
for $k \leftarrow 1$ to n do

```
for }i\leftarrow1\mathrm{ to }n\mathrm{ do
```

for $j \leftarrow 1$ to n do
if $\left.\begin{array}{c}c_{i j}^{(k-1)}>c_{i k}^{(k-1)}+c_{k j}^{(k-1)} \text { then } \\ c_{i j}^{(k)} \leftarrow c_{i k}^{(k-1)}+c_{k j}^{(k-1)}\end{array}\right\}$ relaxation
else

$$
c_{i j}^{(k)} \leftarrow c_{i j}^{(k-1)}
$$

- Runs in $\Theta\left(n^{3}\right)$ time and space
- Simple to code.
- Efficient in practice.

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
- Dijkstra's algorithm: $O(|E| \log |V|)$
- General: Bellman-Ford: $O(|V||E|)$
- DAG: One pass of Bellman-Ford: $O(|V|+|E|)$

All-pairs shortest paths

- Nonnegative edge weights
adj. list
- Dijkstra's algorithm $|V|$ times: $O(|V||E| \log |V|)$
- General
- Bellman-Ford $|V|$ times: $\mathrm{O}\left(|V|{ }^{2}|E|\right)$
- Floyd-Warshall: $\mathrm{O}\left(|V|^{3}\right)$

Johnson's algorithm

1. Compute a weight function \hat{w} from w such that $\hat{w}(u, v) \geq 0$ for all $(u, v) \in E$. (Or determine that a negative-weight cycle exists, and stop.)

- Can be done in $O(|V||E|)$ time (details skipped)

2. Run Dijkstra's algorithm from each vertex using \hat{w}.

- Time $=O(|V||E| \log |V|)$.

3. Reweight each shortest-path length $\hat{w}(p)$ to produce the shortest-path lengths $w(p)$ of the original graph.

- Time $=O\left(|V|^{2}\right)$ (details skipped)

Total time $=O(|V||E| \log |V|)$.

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
- Dijkstra's algorithm: $O(|E| \log |V|)$
- General: Bellman-Ford: $O(|V||E|)$
$\left.\begin{array}{l}\text { - DAG: One pass of Bellman-Ford: } O(|V|+|E|)\end{array}\right\}$ adj. $\begin{aligned} & \text { All-pairs shortest paths } \\ & \text { - Nonnegative edge weights }\end{aligned}$
- Dijkstra's algorithm $|V|$ times: $O(|V||E| \log |V|)$
- General
- Bellman-Ford $|V|$ times: $\mathrm{O}\left(|V|{ }^{2}|E|\right)$
- Floyd-Warshall: $\mathrm{O}\left(|V|^{3}\right)$
- Johnson's algorithm: $O(|V||E| \log |V|)$
adj. list adj. matrix
adj. list

