

More on Shortest Paths

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

CS 3343 Analysis of Algorithms

1

Negative-weight cycles

Recall: If a graph G = (V, E) contains a negativeweight cycle, then some shortest paths may not exist.

Bellman-Ford algorithm: Finds all shortest-path weights from a *source* $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

Bellman-Ford algorithm

 $\begin{array}{c}
d[s] \leftarrow 0 \\
\text{for each } v \in V - \{s\} \\
\text{do } d[v] \leftarrow \infty
\end{array}$ initialization

for $i \leftarrow 1$ to |V| - 1 do for each edge $(u, v) \in E$ do if d[v] > d[u] + w(u, v) then $d[v] \leftarrow d[u] + w(u, v)$ $T[v] \leftarrow u$ relaxation step $\pi[v] \leftarrow u$

for each edge $(u, v) \in E$ **do if** d[v] > d[u] + w(u, v)

then report that a negative-weight cycle exists At the end, $d[v] = \delta(s, v)$. Time = O(|V|/E|).

Order of edges: (*B*,*E*), (*D*,*B*), (*B*,*D*), (*A*,*B*), (*A*,*C*), (*D*,*C*), (*B*,*C*), (*E*,*D*)

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

Note: Values decrease monotonically.

... and 2 more iterations

R

 \mathbf{O}

CS 3343 Analysis of Algorithms

E

 $\mathbf{\Omega}$

 \mathbf{O}

 \mathbf{O}

D

 \mathbf{O}

 $\mathbf{\Omega}$

 \mathbf{O}

 \mathbf{O}

 ∞

-2

 \mathbf{O}

 \mathbf{O}

4

2

2

2

2

Correctness

Theorem. If G = (V, E) contains no negativeweight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$. *Proof.* Let $v \in V$ be any vertex, and consider a shortest path *p* from *s* to *v* with the minimum number of edges.

Since *p* is a shortest path, we have $\delta(s, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i).$

Initially, $d[v_0] = 0 = \delta(s, v_0)$, and d[s] is unchanged by subsequent relaxations.

- After 1 pass through *E*, we have $d[v_1] = \delta(s, v_1)$.
- After 2 passes through *E*, we have $d[v_2] = \delta(s, v_2)$.
- After *k* passes through *E*, we have $d[v_k] = \delta(s, v_k)$. Since *G* contains no negative-weight cycles, *p* is simple. Longest simple path has $\leq |V| - 1$ edges.

Detection of negative-weight cycles

Corollary. If a value d[v] fails to converge after |V| - 1 passes, there exists a negative-weight cycle in *G* reachable from *s*.

DAG shortest paths

If the graph is a *directed acyclic graph* (*DAG*), we first *topologically sort* the vertices.

• Determine $f: V \to \{1, 2, ..., |V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u) < f(v)$.

DAG shortest paths

If the graph is a *directed acyclic graph* (*DAG*), we first *topologically sort* the vertices.

- Determine $f: V \to \{1, 2, ..., |V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u) < f(v)$.
- O(|V| + |E|) time

• Walk through the vertices $u \in V$ in this order, relaxing the edges in Adj[u], thereby obtaining the shortest paths from *s* in a total of O(|V| + |E|) time.

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm: $O(|E| \log |V|)$
- General: Bellman-Ford: O(|V|/E|)
- DAG: One pass of Bellman-Ford: O(|V| + |E|)

All-pairs shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm |V| times: $O(|V|/E| \log |V|)$
- General
 - Bellman-Ford |V| times: $O(|V/^2|E/)$
 - Floyd-Warshall: $O(|V|^3)$

All-pairs shortest paths

Input: Digraph G = (V, E), where |V| = n, with edge-weight function $w : E \to \mathbb{R}$. **Output:** $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

Algorithm #1:

- Run Bellman-Ford once from each vertex.
- Time = $O(|V/^2|E/)$.
- But: Dense graph $\Rightarrow O(|V/^4)$ time.

Floyd-Warshall algorithm

- Dynamic programming algorithm.
- Assume $V=\{1, 2, ..., n\}$, and assume *G* is given in an **adjacency matrix** $A=(a_{ij})_{1 \le i,j \le n}$ where a_{ij} is the weight of the edge from *i* to *j*.
- Define $c_{ij}^{(k)}$ = weight of a shortest path from *i* to *j* with intermediate vertices belonging to the set {1, 2, ..., k}.

Pseudocode for Floyd-Warshall

for $k \leftarrow 1$ to n do for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do if $c_{ij}^{(k-1)} > c_{ik}^{(k-1)} + c_{kj}^{(k-1)}$ then $c_{ij}^{(k)} \leftarrow c_{ik}^{(k-1)} + c_{kj}^{(k-1)}$ relaxation else

$$c_{ij}^{(k)} \leftarrow c_{ij}^{(k-1)}$$

- Runs in $\Theta(n^3)$ time and space
- Simple to code.
- Efficient in practice.

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm: $O(|E| \log |V|)$
- General: Bellman-Ford: O(|V|/E|)
- DAG: One pass of Bellman-Ford: O(|V| + |E|)

All-pairs shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm |V| times: $O(|V|/E/\log |V|)$
- General
 - Bellman-Ford |V| times: $O(|V|^2|E|)$
 - Floyd-Warshall: $O(|V|^3)$

adj. list adj. matrix

adj. list

adj. list

Johnson's algorithm

- 1. Compute a weight function \hat{w} from w such that $\hat{w}(u, v) \ge 0$ for all $(u, v) \in E$. (Or determine that a negative-weight cycle exists, and stop.)
 - Can be done in O(|V|/|E|) time (details skipped)
- 2. Run Dijkstra's algorithm from each vertex using \hat{w} .
 - Time = $O(|V|/E|\log |V|)$.
- 3. Reweight each shortest-path length $\hat{w}(p)$ to produce the shortest-path lengths w(p) of the original graph.
 - Time = $O(|V|^2)$ (details skipped)

Total time = $O(|V|/E|\log |V|)$.

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm: $O(|E| \log |V|)$
- General: Bellman-Ford: O(|V|/E|)
- DAG: One pass of Bellman-Ford: O(|V| + |E|)

All-pairs shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm |V| times: $O(|V|/E| \log |V|)$
- General
 - Bellman-Ford |V| times: $O(|V/^2|E/)$
 - Floyd-Warshall: $O(|V|^3)$
 - Johnson's algorithm: $O(|V| / E/ \log |V|)$

adj. list adj. matrix adj. list

adj. list

adj. list