CS 5633 -- Spring 2012

Augmenting Data Structures

Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

2/21/12 CS 5633 Analysis of Algorithms

~ o~ Dictionaries and Dynamic Sets

Abstract Data Type (ADT) Dictionary :
Insert (x, D) InsertsxInto D | s g

Delete (x, D): deletes x from D [dynamic set
Find (x, D): finds x in D ’

Popular implementation uses any balanced search
tree (not necessarily binary). This way each
operation takes O(log n) time.

2/21/12 CS 5633 Analysis of Algorithms 2

ALGORITHMS

—

“ &~ Dynamic order statistics

WY e

OS-SELECT(I, S): returns the ith smallest element
In the dynamic set S.

OS-RANK(X, S): returns the rank of x € S In the
sorted order of S’s elements.

IDEA: Use a red-black tree for the set S, but keep
subtree sizes In the nodes.

Notation for nodes: The

~
3
<<

2/21/12 CS 5633 Analysis of Algorithms

size[x] = size[left][x]] + size[right[x]] + 1

2/21/12 CS 5633 Analysis of Algorithms

ALGORITHMS

“~ Selection

Implementation trick: Use a sentinel
(dummy record) for niL such that size[NiL] = O.

OS-SELECT(X, 1) c=ith smallest element in the
subtree rooted at x

k < size[left[x]] + 1 & k =rank(x)

If 1 =k then return x

if 1<K
then return OS-SeLecT(left[x], 1)
else return OS-SeLEcCT(right[x], I — k)

(OS-RANK Is In the textbook.)

2/21/12 CS 5633 Analysis of Algorithms

ALGORITHMS

OS-SELECT(x, 1) ©ith smallest element 1n the

subtree rooted at x
\-—‘-;\ Exam p I e k <« size|lefilx]] +1 vk =rank(x)
. if /=/% then return x
if i<k
OS-SELECT(root, 5) then return OS-SELECT(/efifx], 1)

else return OS-SeELECT(right|x], 1 — k)

Running time = O(h) = O(log n) for red-black trees.

2/21/12 CS 5633 Analysis of Algorithms 0

ALGORITHMS

~ -~ Data structure maintenance

Q. Why not keep the ranks themselves
IN the nodes Instead of subtree sizes?

A. They are hard to maintain when the
red-black tree is modified.
k < size[left[x]] + 1 = K = rank(x)

Modifying operations: INSERT and DELETE.

Strategy: Update subtree sizes when
Inserting or deleting.

2/21/12 CS 5633 Analysis of Algorithms

ALGORITHMS

;;;w'ﬂ Example of insertion

INSERT(“K”)

2/21/12 CS 5633 Analysis of Algorithms

ALGORITHMS

s Handling rebalancing

N i

Don’t forget that RB-INserT and RB-DELETE may
also need to modify the red-black tree in order to
maintain balance.

 Recolorings: no effect on subtree sizes.
 Rotations: fix up subtree sizes in O(1) time.

/C
5164
A ; 7 EN
NEW
7 3 3 4

-.RB-INserT and RB-DeLETE still run in O(log n) time.

2/21/12 CS 5633 Analysis of Algorithms 0

Example:

ALGORITHMS

m—-wm

=3 h Data-structure augmentatlon

I\/Iethodology: ()
1. Choose an underlying data structure (

).
2. Determine additional information to be stored
In the data structure ().
3. Verify that this information can be maintained
for modifying operations (
).

4. Develop new dynamic-set operations that use
the information ().

These steps are guidelines, not rigid rules.

2/21/12 CS 5633 Analysis of Algorithms 10

“ o~ Interval trees

Goal: To maintain a dynamic set of intervals,
such as time intervals.

i = [7, 10]
low[i] = 7 =—— 10 = high[i]
5o .11 17 e—e 19
4e X 15 o 18 22 e—e 23

Query: For a given guery interval i, find an
Interval in the set that overlaps I.

2/21/12 CS 5633 Analysis of Algorithms 1

AAAAAAAAAA

Ty —

-

~ &~ Following the methodology

ny

1. Choose an underlying data structure.
 Red-black tree keyed on low (left) endpoint.

2. Determine additional information to be
stored In the data structure.

» Store In each node x the interval int|x]
corresponding to the key, as well as the
largest value m[x] of all right interval
endpoints stored in the subtree rooted at x.

/int
\m/

2/21/12 CS 5633 Analysis of Algorithms

ALGORITHMS

“ < Example interval tree

low[i] =7 == 10 = high|i]

2 * 11 17e—=]%

4 e———— 3] [§e———=]|F 22«73

" high[int[x]]
m[X] = max~< mlleft|x]]
_m[right[x]]

2/21/12 CS 5633 Analysis of Algorithms

AAAAAAAAAA

e I\/Iodlfymg operations

3. Verlfy that this information can be maintained
for modifying operations.
* INSERT: FIX m’s on the way down.
. Rotations — Fixup = O(1) time per rotation:

11 15 6 20
/\)\3%
6,20 » 11,15
30
w o w NG

Total INSERT time = O(log n); DELETE similar.

2/21/12 CS 5633 Analysis of Algorithms 14

~* New operations

S
w
1\\‘ o

4. Develop new dynamic-set operations that use
the information.

INTERVAL-SEARCH(I)
X < root
while x = NIL and (low[i] > high[int[x]]
or low[int[x]] > highl[i])
do = i and int[x] don’t overlap
If left[x] = NIL and low[i] < m[left[x]]
then x <« left[x]
else X « right[x]
return x

2/21/12 CS 5633 Analysis of Algorithms 15

‘?{‘ Example 1: INTERVAL-SEARCH([14,16])

ARY b o

low|i] =7 «—= 10 = high|i]
ie *11 [Fe——=s]8
4oe——3]5e——=]18 2223

14 =216

while x # NIL and (low[i] = high|int|x]]
or low[int|x]] > high[i])
do >/ and inf[x] don’t overlap
if /left[x] # NIL and low[i] < m|left|x]]
then x « lefi[x]
else x <« right[x]

X < root
[14,16] and [17,19] don’t overlap

14 <18 = x « left[x]

2/21/12 CS 5633 Analysis of Algorithms 16

‘?{‘ Example 1: INTERVAL-SEARCH([14,16])

ARY b o

low|i] =7 «—= 10 = high|i]
ie *11 [Fe——=s]8
4oe——3]5e——=]18 2223

14 =216

while x # NIL and (low[i] = high|int|x]]
or low[int|x]] > high[i])
do >/ and inf[x] don’t overlap
if /left[x] # NIL and low[i] < m|left|x]]
then x « lefi[x]
else x <« right[x]

[14,16] and [5,11] don’t overlap
14 > 8 = x <« right[x]

2/21/12 CS 5633 Analysis of Algorithms 17

‘Zj;‘ Example 1: INTERVAL-SEARCH([14,16])

wy
low|i] =7 «—= 10 = high|i]

3 * 11 |Fe—=a]B
4e————§ [§oe—a]8 2223

14 =216

while x # NIL and (low[i] = high|int|x]]
or low[int|x]] > high[i])
do >/ and inf[x] don’t overlap
if /left[x] # NIL and low[i] < m|left|x]]
then x « lefi[x]
else x <« right[x]

[14,16] and [15,18] overlap
return [15,18]

2/21/12 CS 5633 Analysis of Algorithms 18

“ &~ Example 2: IntervaL-SearcH([12,14])

ARY b o

low|i] =7 «—= 10 = high|i]
ie *11 [Fe——=s]8
4oe——3]5e——=]18 2223

12e—=14

while x # NIL and (low[i] = high|int|x]]
or low[int|x]] > high[i])
do >/ and inf[x] don’t overlap
if /left[x] # NIL and low[i] < m|left|x]]
then x « lefi[x]
else x <« right[x]

X < root
[12,14] and [17,19] don’t overlap

12 <18 = x « left]x]

2/21/12 CS 5633 Analysis of Algorithms 19

“ &~ Example 2: IntervaL-SearcH([12,14])

ARY b o

low|i] =7 «—= 10 = high|i]
ie *11 [Fe——=s]8
4oe——3]5e——=]18 2223

12e—=14

while x # NIL and (low[i] = high|int|x]]
or low[int|x]] > high[i])
do >/ and inf[x] don’t overlap
if /left[x] # NIL and low[i] < m|left|x]]
then x « lefi[x]
else x <« right[x]

[12,14] and [5,11] don’t overlap
12 > 8 = x <« right[x]

2/21/12 CS 5633 Analysis of Algorithms 20

“ &~ Example 2: IntervaL-SearcH([12,14])

ARY b o

low|i] =7 «—= 10 = high|i]
ie *11 [Fe——=s]8
4oe——3]5e——=]18 2223

12e—=14

while x # NIL and (low[i] = high|int|x]]
or low[int|x]] > high[i])
do >/ and inf[x] don’t overlap
if /left[x] # NIL and low[i] < m|left|x]]
then x « lefi[x]
else x <« right[x]

[12,14] and [15,18] don’t overlap
12 > 10 = x <« right[x]

2/21/12 CS 5633 Analysis of Algorithms 21

| iLcorli'T'HMs'
sy Example 2: IntervaL-SearcH([12,14])

1\\\ o

low|i] =7 «—= 10 = high|i]
ie *11 [Fe——=s]8
4oe——3]5e——=]18 2223

12e—=14

while x # NIL and (low[i] = high|int|x]]
or low[int|x]] > high[i])
do >/ and inf[x] don’t overlap
if /left[x] # NIL and low[i] < m|left|x]]
then x « lefi[x]
else x <« right[x]

X

X = NIL = no Interval that
overlaps [12,14] exists

2/21/12 CS 5633 Analysis of Algorithms 22

i_GO‘ﬁiTHMS]
ey Analysis

Time = O(h) = O(log n), since INTERVAL-
SEARCH does constant work at each level as it
follows a simple path down the tree.

List all overlapping intervals:
 Search, list, delete, repeat.

e Insert them all again at the end.
Time = O(k log n), where k is the total number
of overlapping intervals.

This Is an output-sensitive bound.
Best algorithm to date: O(k + log n).

2/21/12 CS 5633 Analysis of Algorithms 23

ALGORITHMS

“.+ Correctness

Theorem. Let L be the set of intervals in the
left subtree of node x, and let R be the set of
Intervals In x’s right subtree.

o If the search goes right, then

{1"eL:1"overlapsi } = .
o If the search goes left, then
{iI"eL:1"overlapsi } =
= {1I" e R:1"overlapsi } = U.
In other words, It’s always safe to take only 1

of the 2 children: we’ll either find something,
or nothing was to be found.

2/21/12 CS 5633 Analysis of Algorithms 24

ALGORITHMS

"~ Correctness proof

Proof. Suppose first that the search goes right.
o If left[x] = NIL, then we’re done, since L = .

 Otherwise, the code dictates that we must have
low[i] > m[left[x]]. The value m[left[x]]
corresponds to the right endpoint of some
Interval | € L, and no other interval in L can
have a larger right endpoint than high().

[
high(j) = mlleftx]] — = low(i)
* Therefore, {I’ € L : 1" overlaps i } = .

2/21/12 CS 5633 Analysis of Algorithms 25

:;;Q' Proof (continued)

Suppose that the search goes left, and assume that
{I"eL:1"overlapsi } = .
 Then, the code dictates that low[i] < m[left[x]] =
high[j] for some | € L.
e Since | < L, 1t does not overlap I, and hence
high[i] < low] j].
 But, the binary-search-tree property implies that

forall I’ € R, we have low[j] < low[i].
Butthen {I' € R:1"overlapsi } = U.
| J

/
I

2/21/12 CS 5633 Analysis of Algorithms 20

