

Augmenting Data Structures Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

CS 5633 Analysis of Algorithms

Dictionaries and Dynamic Sets

Abstract Data Type (ADT) Dictionary :

- Insert (x, D): inserts x into D
- Delete (x, D): deletes x from D

D is a dynamic set

Find (x, D): finds x in D

Popular implementation uses any balanced search tree (not necessarily binary). This way each operation takes $O(\log n)$ time.

Dynamic order statistics

- OS-SELECT(i, S): returns the *i*th smallest element in the dynamic set *S*.
- OS-RANK(x, S): returns the rank of $x \in S$ in the sorted order of S's elements.

IDEA: Use a red-black tree for the set *S*, but keep subtree sizes in the nodes.

Notation for nodes:

size[x] = size[left[x]] + size[right[x]] + 1

CS 5633 Analysis of Algorithms

Selection

Implementation trick: Use a *sentinel* (dummy record) for NIL such that *size*[NIL] = 0.

- OS-SELECT(x, i) $\triangleright i$ th smallest element in the subtree rooted at x
 - $k \leftarrow size[left[x]] + 1 \quad \triangleright k = rank(x)$
 - if i = k then return x
 - if i < k

then return OS-SELECT(*left*[*x*], *i*) **else return** OS-SELECT(*right*[*x*], *i* – *k*)

```
(OS-RANK is in the textbook.)
```


Example

OS-SELECT(*root*, 5)

OS-SELECT(x, i) > ith smallest element in the subtree rooted at x $k \leftarrow size[left[x]] + 1 > k = rank(x)$ if i = k then return xif i < kthen return OS-SELECT(left[x], i)

else return OS-SELECT(right[x], i-k) i = 5 $\bigcirc M$ k = 6 $\bigcirc 9$ i = 5 $\bigcirc M$ k = 6 $\bigcirc 9$ i = 3 k = 2 A i = 3 k = 2 A i = 1 k = 1 i = 1 k = 1 i = 3k = 1

Running time = $O(h) = O(\log n)$ for red-black trees.

CS 5633 Analysis of Algorithms

Data structure maintenance

Q. Why not keep the ranks themselves in the nodes instead of subtree sizes?

A. They are hard to maintain when the red-black tree is modified. $k \leftarrow size[left[x]] + 1 \qquad \triangleright k = rank(x)$

Modifying operations: INSERT and DELETE. Strategy: Update subtree sizes when inserting or deleting.

Example of insertion

Handling rebalancing

Don't forget that RB-INSERT and RB-DELETE may also need to modify the red-black tree in order to maintain balance.

- *Recolorings*: no effect on subtree sizes.
- *Rotations*: fix up subtree sizes in O(1) time.

 \therefore RB-INSERT and RB-DELETE still run in $O(\log n)$ time.

Data-structure augmentation

Methodology: (e.g., order-statistics trees)

- 1. Choose an underlying data structure (*red-black tree*).
- 2. Determine additional information to be stored in the data structure (*subtree sizes*).
- Verify that this information can be maintained for modifying operations (RB-INSERT, RB-DELETE — *don't forget rotations*).
- 4. Develop new dynamic-set operations that use the information (OS-SELECT *and* OS-RANK).

These steps are guidelines, not rigid rules.

Interval trees

Goal: To maintain a dynamic set of intervals, such as time intervals.

Query: For a given query interval *i*, find an interval in the set that overlaps *i*.

Following the methodology

- Choose an underlying data structure.
 Red-black tree keyed on low (left) endpoint.
- 2. Determine additional information to be stored in the data structure.
 - Store in each node x the interval int[x] corresponding to the key, as well as the largest value m[x] of all right interval endpoints stored in the subtree rooted at x.

Modifying operations

3. Verify that this information can be maintained for modifying operations.

- INSERT: Fix *m*'s on the way down.
- Rotations Fixup = O(1) time per rotation:

Total INSERT time = $O(\log n)$; DELETE similar.

CS 5633 Analysis of Algorithms

New operations

4. Develop new dynamic-set operations that use the information.

INTERVAL-SEARCH(*i*) $x \leftarrow root$ while $x \neq NIL$ and (low[i] > high[int[x]] $or \ low[int[x]] > high[i])$ do $\succ i$ and int[x] don't overlap if $left[x] \neq NIL$ and $low[i] \leq m[left[x]]$ then $x \leftarrow left[x]$ $else \ x \leftarrow right[x]$

return x

Example 1: INTERVAL-SEARCH([14,16]) $x \underbrace{17,19}_{4 \longrightarrow 8} \xrightarrow{low[i] = 7 \longrightarrow 10 = high[i]}_{15 \longrightarrow 18 \ 22 \longrightarrow 23}$

23

5,11

 $14 \le 18 \Longrightarrow x \leftarrow left[x]$

4,8

8

14 - 16

Example 2: Interval-Search([12,14])

Example 2: INTERVAL-SEARCH([12,14])

Example 2: Interval-Search([12,14])

Example 2: INTERVAL-SEARCH([12,14])

Analysis

Time = $O(h) = O(\log n)$, since INTERVAL-SEARCH does constant work at each level as it follows a simple path down the tree.

List *all* overlapping intervals:

- Search, list, delete, repeat.
- Insert them all again at the end. Time = $O(k \log n)$, where k is the total number of overlapping intervals.
- This is an *output-sensitive* bound.

Best algorithm to date: $O(k + \log n)$.

Correctness

Theorem. Let *L* be the set of intervals in the left subtree of node *x*, and let *R* be the set of intervals in x's right subtree.

• If the search goes right, then

{ $i' \in L : i'$ overlaps i } = \emptyset .

• If the search goes left, then

 $\{i' \in L : i' \text{ overlaps } i\} = \emptyset$ $\Rightarrow \{i' \in R : i' \text{ overlaps } i\} = \emptyset.$

In other words, it's always safe to take only 1 of the 2 children: we'll either find something, or nothing was to be found.

Correctness proof

Proof. Suppose first that the search goes right.

- If left[x] = NIL, then we're done, since $L = \emptyset$.
- Otherwise, the code dictates that we must have low[i] > m[left[x]]. The value m[left[x]] corresponds to the right endpoint of some interval j ∈ L, and no other interval in L can have a larger right endpoint than high(j).

$$i$$

$$high(j) = m[left[x]] \xrightarrow{i} low(i)$$

• Therefore, $\{i' \in L : i' \text{ overlaps } i\} = \emptyset$.

Proof (continued)

Suppose that the search goes left, and assume that $\{i' \in L : i' \text{ overlaps } i\} = \emptyset$.

- Then, the code dictates that *low*[*i*] ≤ *m*[*left*[*x*]] = *high*[*j*] for some *j* ∈ *L*.
- Since *j* ∈ *L*, it does not overlap *i*, and hence *high*[*i*] < *low*[*j*].
- But, the binary-search-tree property implies that for all *i*' ∈ *R*, we have *low*[*j*] ≤ *low*[*i*'].
- But then $\{i' \in R : i' \text{ overlaps } i\} = \emptyset$.

