
CS 5633 -- Spring 2012

Augmenting Data Structures
Carola Wenk

Slides courtesy of Charles Leiserson with small 

12/21/12 CS 5633 Analysis of Algorithms

y
changes by Carola Wenk



Dictionaries and Dynamic Setsy

Abstract Data Type (ADT) Dictionary :
Insert (x, D): inserts x into D
Delete (x D): deletes x from D

D is a 
dynamic setDelete (x, D): deletes x from D

Find (x, D): finds x in D
dynamic set

Popular implementation uses any balanced search 
tree (not necessarily binary) This way eachtree (not necessarily binary). This way each 
operation takes O(log n) time.
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Dynamic order statisticsy

OS-SELECT(i, S): returns the i th smallest element 
in the dynamic set S.

OS-RANK(x, S): returns the rank of x ∈ S in the ( )
sorted order of S’s elements.

IDEA: Use a red-black tree for the set S, but keep 
subtree sizes in the nodes.

key
sizeNotation for nodes:
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Example of an OS-treep
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size[x] = size[left[x]] + size[right[x]] + 1
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Selection
Implementation trick: Use a sentinel
(d mm record) for NIL s ch that i [NIL] 0

OS-SELECT(x, i) ith smallest element in the 

(dummy record) for NIL such that size[NIL] = 0.

subtree rooted at x 
k ← size[left[x]] + 1 k = rank(x)
if i k th tif  i = k  then return x
if  i < k  

then return OS-SELECT( left[x] i )then return OS-SELECT( left[x], i )
else return OS-SELECT(right[x], i – k )

( i i h b k )
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(OS-RANK is in the textbook.)



Examplep
OS-SELECT(root, 5)
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Running time = O(h) = O(log n) for red-black trees.



Data structure maintenance
Q. Why not keep the ranks themselves 

in the nodes instead of s btree si es?in the nodes instead of subtree sizes?

A. They are hard to maintain when the 
red-black tree is modified.
k ← size[left[x]] + 1 k = rank(x)

Modifying operations: INSERT and DELETE.
Strategy: Update subtree sizes when 
inserting or deleting.
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Example of insertionp
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Handling rebalancingg g
Don’t forget that RB-INSERT and RB-DELETE may 
also need to modify the red-black tree in order toalso need to modify the red black tree in order to 
maintain balance.
• Recolorings: no effect on subtree sizes.
• Rotations: fix up subtree sizes in O(1) time.

Example: E Cp
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∴RB-INSERT and RB-DELETE still run in O(log n) time.



Data-structure augmentationg
Methodology: (e.g., order-statistics trees)
1 Ch d l i d t t t ( d bl k1. Choose an underlying data structure (red-black 

tree).
2 Determine additional information to be stored2. Determine additional information to be stored 

in the data structure (subtree sizes).
3. Verify that this information can be maintained3. Verify that this information can be maintained 

for modifying operations (RB-INSERT, RB-
DELETE — don’t forget rotations).f g

4. Develop new dynamic-set operations that use 
the information (OS-SELECT and OS-RANK).
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These steps are guidelines, not rigid rules.



Interval trees
Goal: To maintain a dynamic set of intervals, 
s ch as time inter alssuch as time intervals.

i = [7, 10]

low[i] = 7 10 = high[i]

[ , ]

5 1711 195
4 15 22

1711
8 18

19
23

Query: For a given query interval i, find an 
interval in the set that overlaps i.
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Following the methodologyg gy

1. Choose an underlying data structure.
• Red-black tree keyed on low (left) endpoint.

2. Determine additional information to be 
stored in the data structure.
• Store in each node x the interval int[x]

di t th k ll thcorresponding to the key, as well as the 
largest value m[x] of all right interval 
endpoints stored in the subtree rooted at x

int
endpoints stored in the subtree rooted at x.
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Example interval tree
int
m
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m[x] = max
high[int[x]]
m[left[x]]
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Modifying operationsy g p
3. Verify that this information can be maintained 

for modifying operationsfor modifying operations.
• INSERT: Fix m’s on the way down.
• Rotations — Fixup = O(1) time per rotation:
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Total INSERT time = O(log n); DELETE similar.



New operationsp
4. Develop new dynamic-set operations that use 

the informationthe information.
INTERVAL-SEARCH(i)

x ← rootx ← root
while x ≠ NIL and (low[i] > high[int[x]] 

or low[int[x]] > high[i])or low[int[x]]  high[i])
do i and int[x] don’t overlap

if left[x] ≠ NIL and low[i] ≤ m[left[x]]
then x ← left[x]
else x ← right[x]

t
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return x



Example 1: INTERVAL-SEARCH([14,16])p ( )
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7,10
10 x ← root10 x ← root

[14,16] and [17,19] don’t overlap
14 ≤ 18 ⇒ ← l ft[ ]
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14 ≤ 18 ⇒ x ← left[x]



Example 1: INTERVAL-SEARCH([14,16])p ( )
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[14,16] and [5,11] don’t overlap
14 > 8 ⇒ ← i ht[ ]
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14 > 8 ⇒ x ← right[x]



Example 1: INTERVAL-SEARCH([14,16])p ( )
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[14,16] and [15,18] overlap
t [15 18]
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return [15,18]



Example 2: INTERVAL-SEARCH([12,14])p ( )
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10 x ← root10 x ← root

[12,14] and [17,19] don’t overlap
12 ≤ 18 ⇒ ← l ft[ ]
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12 ≤ 18 ⇒ x ← left[x]



Example 2: INTERVAL-SEARCH([12,14])p ( )
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[12,14] and [5,11] don’t overlap
12 > 8 ⇒ ← i ht[ ]
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12 > 8 ⇒ x ← right[x]



Example 2: INTERVAL-SEARCH([12,14])p ( )

17,1917,19
23 12 1423

5,11
18

22,2322,23
23

12 14

18

4,8
8

15,1815,18
18

23

x8 18

7,10
1010

[12,14] and [15,18] don’t overlap
12 > 10 ⇒ ← i ht[ ]
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12 > 10 ⇒ x ← right[x]



Example 2: INTERVAL-SEARCH([12,14])p ( )
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x
10

x = NIL ⇒ no interval that 
overlaps [12 14] exists

222/21/12 CS 5633 Analysis of Algorithms

overlaps [12,14] exists



Analysisy
Time = O(h) = O(log n), since INTERVAL-
SEARCH does constant work at each level as itSEARCH does constant work at each level as it 
follows a simple path down the tree.
Li ll l i i lList all overlapping intervals:
• Search, list, delete, repeat.

I h ll i h d• Insert them all again at the end.
Time = O(k log n), where k is the total number 
of overlapping intervals
This is an output-sensitive bound.
of overlapping intervals.
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Best algorithm to date: O(k + log n).



Correctness
Theorem.  Let L be the set of intervals in the 
left subtree of node x and let R be the set ofleft subtree of node x, and let R be the set of 
intervals in x’s right subtree.
• If the search goes right, thenIf the search goes right, then

{ i ′ ∈ L : i ′ overlaps i } = ∅.
• If the search goes left, thenIf the search goes left, then

{i ′ ∈ L : i ′ overlaps i } = ∅
⇒ {i ′ ∈ R : i ′ overlaps i } = ∅.{ p }

In other words, it’s always safe to take only 1
of the 2 children: we’ll either find something, 
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f f g
or nothing was to be found.



Correctness proofp
Proof. Suppose first that the search goes right.  

If l f [ ] NIL th ’ d i L ∅• If left[x] = NIL, then we’re done, since L = ∅. 
• Otherwise, the code dictates that we must have 

l [i] > [l ft[ ]] Th l [l ft[ ]]low[i] > m[left[x]].  The value m[left[x]]
corresponds to the right endpoint of some 
interval j ∈ L and no other interval in L caninterval j ∈ L, and no other interval in L can 
have a larger right endpoint than high( j).

iL
high( j) = m[left[x]]

i
low(i)
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• Therefore, {i ′ ∈ L : i ′ overlaps i } = ∅.



Proof (continued)( )
Suppose that the search goes left, and assume that

{i ′ ∈ L : i ′ overlaps i } = ∅{i ∈ L : i overlaps i }  ∅.
• Then, the code dictates that low[i] ≤ m[left[x]] = 

high[ j] for some j ∈ L.high[ j] o so e j
• Since  j ∈ L, it does not overlap i, and hence 

high[i] < low[ j].g [ ] [ j]
• But, the binary-search-tree property implies that 

for all i ′ ∈ R, we have low[ j] ≤ low[i ′].
• But then {i ′ ∈ R : i ′ overlaps i } = ∅.

i j
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