
CS 5633 -- Spring 2012

Augmenting Data Structures
Carola Wenk

Slides courtesy of Charles Leiserson with small

12/21/12 CS 5633 Analysis of Algorithms

y
changes by Carola Wenk

Dictionaries and Dynamic Setsy

Abstract Data Type (ADT) Dictionary :
Insert (x, D): inserts x into D
Delete (x D): deletes x from D

D is a
dynamic setDelete (x, D): deletes x from D

Find (x, D): finds x in D
dynamic set

Popular implementation uses any balanced search
tree (not necessarily binary) This way eachtree (not necessarily binary). This way each
operation takes O(log n) time.

22/21/12 CS 5633 Analysis of Algorithms

Dynamic order statisticsy

OS-SELECT(i, S): returns the i th smallest element
in the dynamic set S.

OS-RANK(x, S): returns the rank of x ∈ S in the ()
sorted order of S’s elements.

IDEA: Use a red-black tree for the set S, but keep
subtree sizes in the nodes.

key
sizeNotation for nodes:

32/21/12 CS 5633 Analysis of Algorithms

size

Example of an OS-treep
MM
999

CC
5

PP
355

AA
1

FF
3

NN
1

QQ
1

33

H
1
H
1

D
1
D
1

size[x] = size[left[x]] + size[right[x]] + 1

42/21/12 CS 5633 Analysis of Algorithms

[] [f []] [g []]

Selection
Implementation trick: Use a sentinel
(d mm record) for NIL s ch that i [NIL] 0

OS-SELECT(x, i) ith smallest element in the

(dummy record) for NIL such that size[NIL] = 0.

subtree rooted at x
k ← size[left[x]] + 1 k = rank(x)
if i k th tif i = k then return x
if i < k

then return OS-SELECT(left[x] i)then return OS-SELECT(left[x], i)
else return OS-SELECT(right[x], i – k)

(i i h b k)
52/21/12 CS 5633 Analysis of Algorithms

(OS-RANK is in the textbook.)

Examplep
OS-SELECT(root, 5)

M
9
M
9

i = 5
k = 6

M
9
M
9

C
5
C
5

P
3
P
3

C
5
C
5

i = 5
k = 2

A
1
A
1

F
3
F
3

N
1
N
1

Q
1
Q
1

HHDD

i = 3
k = 2

F
3
F
3

i 1HHHH
1
H
11

D
1

i = 1
k = 11

H
11
H
1

i i (h) (l) f d bl k
62/21/12 CS 5633 Analysis of Algorithms

Running time = O(h) = O(log n) for red-black trees.

Data structure maintenance
Q. Why not keep the ranks themselves

in the nodes instead of s btree si es?in the nodes instead of subtree sizes?

A. They are hard to maintain when the
red-black tree is modified.
k ← size[left[x]] + 1 k = rank(x)

Modifying operations: INSERT and DELETE.
Strategy: Update subtree sizes when
inserting or deleting.

72/21/12 CS 5633 Analysis of Algorithms

Example of insertionp

MM
INSERT(“K”)

MM
9
M
9

CC PP
10
M
10

CC
5
C
5

AA FF NN QQ
3
P
36

C
6

FF
11 33 11 11

HH
1

DD
1

44
HH
21111 22

KK
1

82/21/12 CS 5633 Analysis of Algorithms

11

Handling rebalancingg g
Don’t forget that RB-INSERT and RB-DELETE may
also need to modify the red-black tree in order toalso need to modify the red black tree in order to
maintain balance.
• Recolorings: no effect on subtree sizes.
• Rotations: fix up subtree sizes in O(1) time.

Example: E Cp

C
16
E
16

4

16
C
16

E71111

7 3

4 87

3 4

92/21/12 CS 5633 Analysis of Algorithms

∴RB-INSERT and RB-DELETE still run in O(log n) time.

Data-structure augmentationg
Methodology: (e.g., order-statistics trees)
1 Ch d l i d t t t (d bl k1. Choose an underlying data structure (red-black

tree).
2 Determine additional information to be stored2. Determine additional information to be stored

in the data structure (subtree sizes).
3. Verify that this information can be maintained3. Verify that this information can be maintained

for modifying operations (RB-INSERT, RB-
DELETE — don’t forget rotations).f g

4. Develop new dynamic-set operations that use
the information (OS-SELECT and OS-RANK).

102/21/12 CS 5633 Analysis of Algorithms

These steps are guidelines, not rigid rules.

Interval trees
Goal: To maintain a dynamic set of intervals,
s ch as time inter alssuch as time intervals.

i = [7, 10]

low[i] = 7 10 = high[i]

[,]

5 1711 195
4 15 22

1711
8 18

19
23

Query: For a given query interval i, find an
interval in the set that overlaps i.

112/21/12 CS 5633 Analysis of Algorithms

Following the methodologyg gy

1. Choose an underlying data structure.
• Red-black tree keyed on low (left) endpoint.

2. Determine additional information to be
stored in the data structure.
• Store in each node x the interval int[x]

di t th k ll thcorresponding to the key, as well as the
largest value m[x] of all right interval
endpoints stored in the subtree rooted at x

int
endpoints stored in the subtree rooted at x.

122/21/12 CS 5633 Analysis of Algorithms

m

Example interval tree
int
m
int
mp

17,1917,19
23d

5,11
18

22,2322,23
23

red

18

4,8
8

15,1815,18
18

23

8 18

7,10
10

m[x] = max
high[int[x]]
m[left[x]]

132/21/12 CS 5633 Analysis of Algorithms

10
[] [f []]

m[right[x]]

Modifying operationsy g p
3. Verify that this information can be maintained

for modifying operationsfor modifying operations.
• INSERT: Fix m’s on the way down.
• Rotations — Fixup = O(1) time per rotation:

6,20
30

11,1511,15
30

p () p

11,1511,15
1930

6,20
30 19

191430 14

142/21/12 CS 5633 Analysis of Algorithms

Total INSERT time = O(log n); DELETE similar.

New operationsp
4. Develop new dynamic-set operations that use

the informationthe information.
INTERVAL-SEARCH(i)

x ← rootx ← root
while x ≠ NIL and (low[i] > high[int[x]]

or low[int[x]] > high[i])or low[int[x]] high[i])
do i and int[x] don’t overlap

if left[x] ≠ NIL and low[i] ≤ m[left[x]]
then x ← left[x]
else x ← right[x]

t
152/21/12 CS 5633 Analysis of Algorithms

return x

Example 1: INTERVAL-SEARCH([14,16])p ()

17,1917,19
23

x
14 1623

5,11
18

22,2322,23
23

14 16

18

4,8
8

15,1815,18
18

23

8 18

7,10
10 x ← root10 x ← root

[14,16] and [17,19] don’t overlap
14 ≤ 18 ⇒ ← l ft[]

162/21/12 CS 5633 Analysis of Algorithms

14 ≤ 18 ⇒ x ← left[x]

Example 1: INTERVAL-SEARCH([14,16])p ()

17,1917,19
23 14 1623

5,11
18

22,2322,23
23

x

14 16

18

4,8
8

15,1815,18
18

23

8 18

7,10
1010

[14,16] and [5,11] don’t overlap
14 > 8 ⇒ ← i ht[]

172/21/12 CS 5633 Analysis of Algorithms

14 > 8 ⇒ x ← right[x]

Example 1: INTERVAL-SEARCH([14,16])p ()

17,1917,19
23 14 1623

5,11
18

22,2322,23
23

14 16

18

4,8
8

15,1815,18
18

23

x8 18

7,10
1010

[14,16] and [15,18] overlap
t [15 18]

182/21/12 CS 5633 Analysis of Algorithms

return [15,18]

Example 2: INTERVAL-SEARCH([12,14])p ()

17,1917,19
23

x
12 1423

5,11
18

22,2322,23
23

12 14

18

4,8
8

15,1815,18
18

23

8 18

7,10
10 x ← root10 x ← root

[12,14] and [17,19] don’t overlap
12 ≤ 18 ⇒ ← l ft[]

192/21/12 CS 5633 Analysis of Algorithms

12 ≤ 18 ⇒ x ← left[x]

Example 2: INTERVAL-SEARCH([12,14])p ()

17,1917,19
23 12 1423

5,11
18

22,2322,23
23

x

12 14

18

4,8
8

15,1815,18
18

23

8 18

7,10
1010

[12,14] and [5,11] don’t overlap
12 > 8 ⇒ ← i ht[]

202/21/12 CS 5633 Analysis of Algorithms

12 > 8 ⇒ x ← right[x]

Example 2: INTERVAL-SEARCH([12,14])p ()

17,1917,19
23 12 1423

5,11
18

22,2322,23
23

12 14

18

4,8
8

15,1815,18
18

23

x8 18

7,10
1010

[12,14] and [15,18] don’t overlap
12 > 10 ⇒ ← i ht[]

212/21/12 CS 5633 Analysis of Algorithms

12 > 10 ⇒ x ← right[x]

Example 2: INTERVAL-SEARCH([12,14])p ()

17,1917,19
23 12 1423

5,11
18

22,2322,23
23

12 14

18

4,8
8

15,1815,18
18

23

8 18

7,10
10

x
10

x = NIL ⇒ no interval that
overlaps [12 14] exists

222/21/12 CS 5633 Analysis of Algorithms

overlaps [12,14] exists

Analysisy
Time = O(h) = O(log n), since INTERVAL-
SEARCH does constant work at each level as itSEARCH does constant work at each level as it
follows a simple path down the tree.
Li ll l i i lList all overlapping intervals:
• Search, list, delete, repeat.

I h ll i h d• Insert them all again at the end.
Time = O(k log n), where k is the total number
of overlapping intervals
This is an output-sensitive bound.
of overlapping intervals.

232/21/12 CS 5633 Analysis of Algorithms

Best algorithm to date: O(k + log n).

Correctness
Theorem. Let L be the set of intervals in the
left subtree of node x and let R be the set ofleft subtree of node x, and let R be the set of
intervals in x’s right subtree.
• If the search goes right, thenIf the search goes right, then

{ i ′ ∈ L : i ′ overlaps i } = ∅.
• If the search goes left, thenIf the search goes left, then

{i ′ ∈ L : i ′ overlaps i } = ∅
⇒ {i ′ ∈ R : i ′ overlaps i } = ∅.{ p }

In other words, it’s always safe to take only 1
of the 2 children: we’ll either find something,

242/21/12 CS 5633 Analysis of Algorithms

f f g
or nothing was to be found.

Correctness proofp
Proof. Suppose first that the search goes right.

If l f [] NIL th ’ d i L ∅• If left[x] = NIL, then we’re done, since L = ∅.
• Otherwise, the code dictates that we must have

l [i] > [l ft[]] Th l [l ft[]]low[i] > m[left[x]]. The value m[left[x]]
corresponds to the right endpoint of some
interval j ∈ L and no other interval in L caninterval j ∈ L, and no other interval in L can
have a larger right endpoint than high(j).

iL
high(j) = m[left[x]]

i
low(i)

252/21/12 CS 5633 Analysis of Algorithms

• Therefore, {i ′ ∈ L : i ′ overlaps i } = ∅.

Proof (continued)()
Suppose that the search goes left, and assume that

{i ′ ∈ L : i ′ overlaps i } = ∅{i ∈ L : i overlaps i } ∅.
• Then, the code dictates that low[i] ≤ m[left[x]] =

high[j] for some j ∈ L.high[j] o so e j
• Since j ∈ L, it does not overlap i, and hence

high[i] < low[j].g [] [j]
• But, the binary-search-tree property implies that

for all i ′ ∈ R, we have low[j] ≤ low[i ′].
• But then {i ′ ∈ R : i ′ overlaps i } = ∅.

i j

262/21/12 CS 5633 Analysis of Algorithms

Li ′

