

### **Red-black trees**

### **Carola Wenk**

### Slides courtesy of Charles Leiserson with small changes by Carola Wenk

CS 56333 Analysis of Algorithms

1



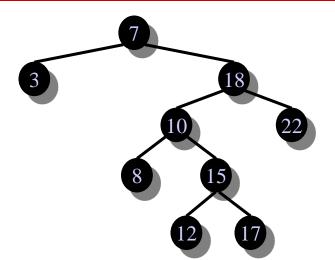
## **Search Trees**

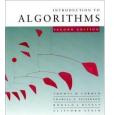
• A binary search tree is a binary tree. Each node stores a key. The tree fulfills the **binary search tree property**:

For every node *x* holds:

•  $y \le x$ , for all y in the subtree left of x

• x < y, for all y in the subtree right of x

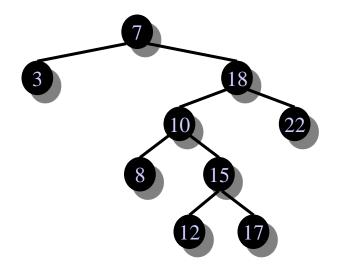




## **Search Trees**

Different variants of search trees:

- Balanced search trees (guarantee height of log *n* for *n* elements)
- *k*-ary search trees (such as B-trees, 2-3-4-trees)
- Search trees that store the keys only in the leaves, and store additional split-values in the internal nodes

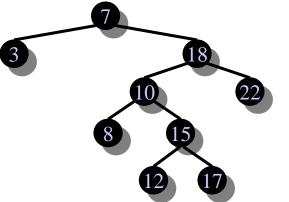




# **ADT Dictionary / Dynamic Set**

### Abstract data type (ADT) Dictionary (also called Dynamic Set):

- A data structure which supports operations
- Insert
- Delete
- Find



Using **balanced binary search trees** we can implement a dictionary data structure such that each operation takes  $O(\log n)$  time.



## **Balanced search trees**

**Balanced search tree:** A search-tree data structure for which a height of  $O(\log n)$  is guaranteed when implementing a dynamic set of *n* items.

- AVL trees
- 2-3 trees

- 2-3-4 trees
- B-trees
- Red-black trees



## **Red-black trees**

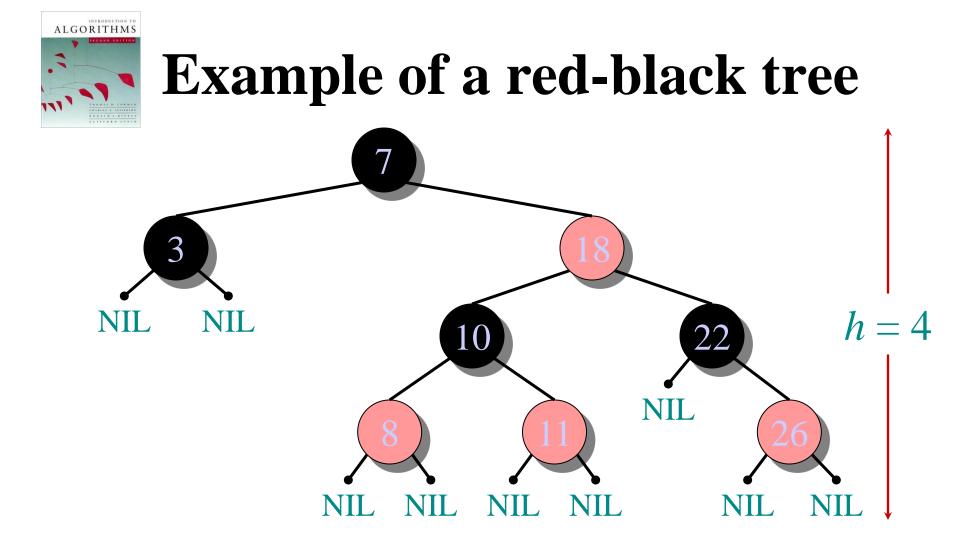
This data structure requires an extra onebit color field in each node.

### **Red-black properties:**

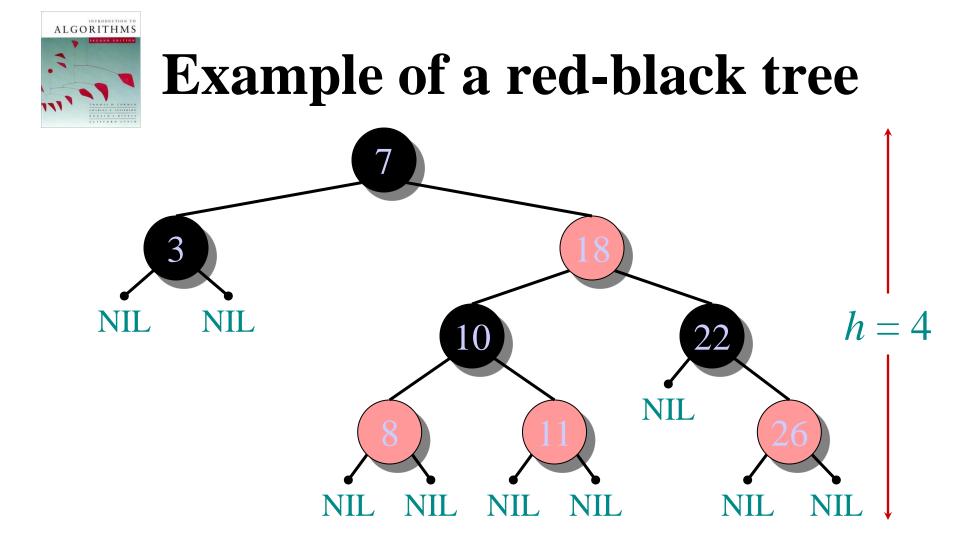
- 1. Every node is either red or black.
- 2. The root is black.
- 3. The leaves (NIL's) are black.
- 4. If a node is red, then both its children are black.
- 5. All simple paths from any node *x*, excluding *x*, to a descendant leaf have the same number of black nodes = black-height(*x*).



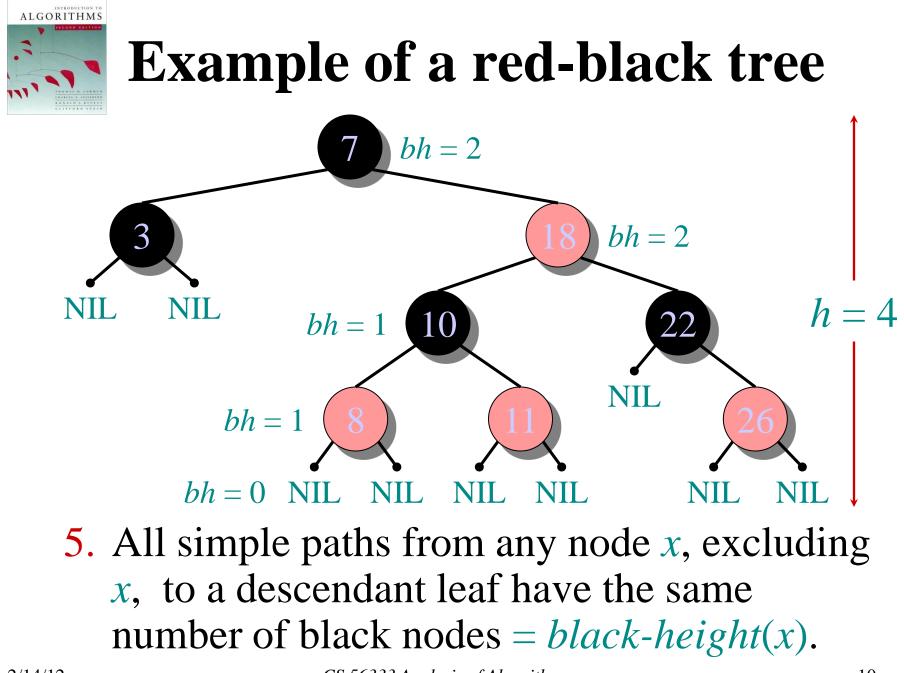
#### 1. Every node is either red or black.

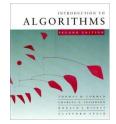


#### 2., 3. The root and leaves (NIL's) are black.



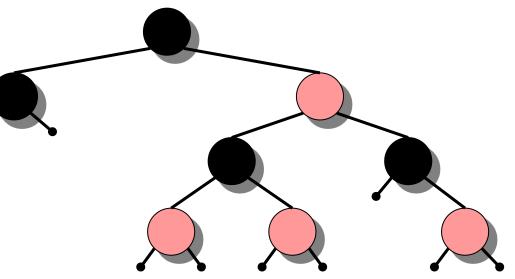
# 4. If a node is red, then both its children are black.

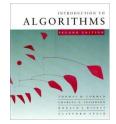




# **Theorem.** A red-black tree with *n* keys has height $h \le 2 \log(n + 1)$ .

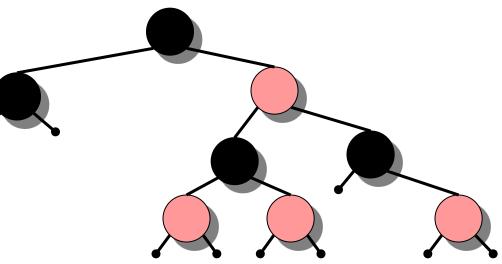
*Proof.* (The book uses induction. Read carefully.) **INTUITION:** 

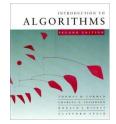




# **Theorem.** A red-black tree with n keys has height $h \le 2 \log(n + 1)$ .

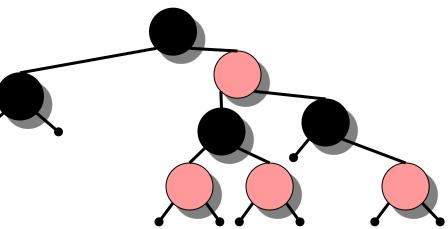
*Proof.* (The book uses induction. Read carefully.) **INTUITION:** 

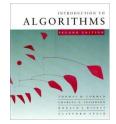




# **Theorem.** A red-black tree with n keys has height $h \le 2 \log(n + 1)$ .

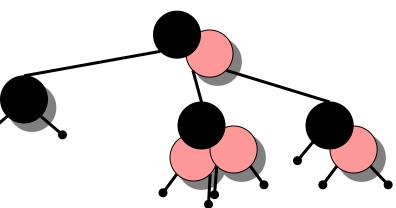
*Proof.* (The book uses induction. Read carefully.) **INTUITION:** 

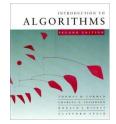




# **Theorem.** A red-black tree with n keys has height $h \le 2 \log(n + 1)$ .

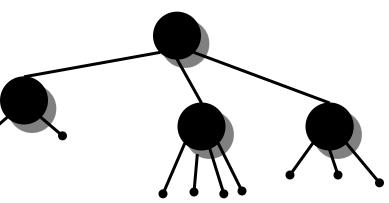
*Proof.* (The book uses induction. Read carefully.) **INTUITION:** 





# **Theorem.** A red-black tree with n keys has height $h \le 2 \log(n + 1)$ .

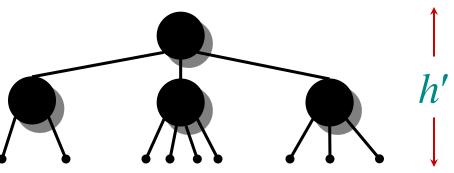
*Proof.* (The book uses induction. Read carefully.) **INTUITION:** 





# **Theorem.** A red-black tree with *n* keys has height $h \le 2 \log(n + 1)$ .

*Proof.* (The book uses induction. Read carefully.) INTUITION:



- This process produces a tree in which each node has 2, 3, or 4 children.
- The 2-3-4 tree has uniform depth h' of leaves.



# **Proof (continued)**

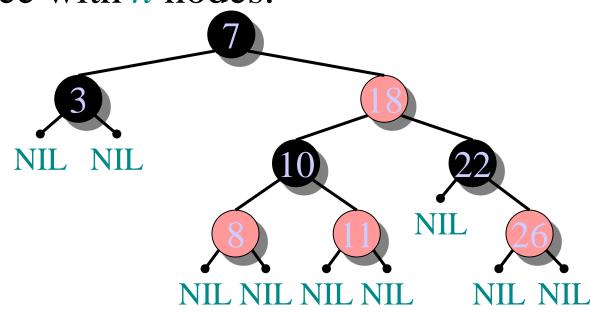
- We have
  h' ≥ h/2, since
  at most half
  the vertices on any
  path are red.
- The number of leaves in each tree is n + 1 $\Rightarrow n + 1 \ge 2^{h'}$  $\Rightarrow \log(n + 1) \ge h' \ge h/2$

h'



# **Query operations**

**Corollary.** The queries SEARCH, MIN, MAX, SUCCESSOR, and PREDECESSOR all run in  $O(\log n)$  time on a red-black tree with *n* nodes.

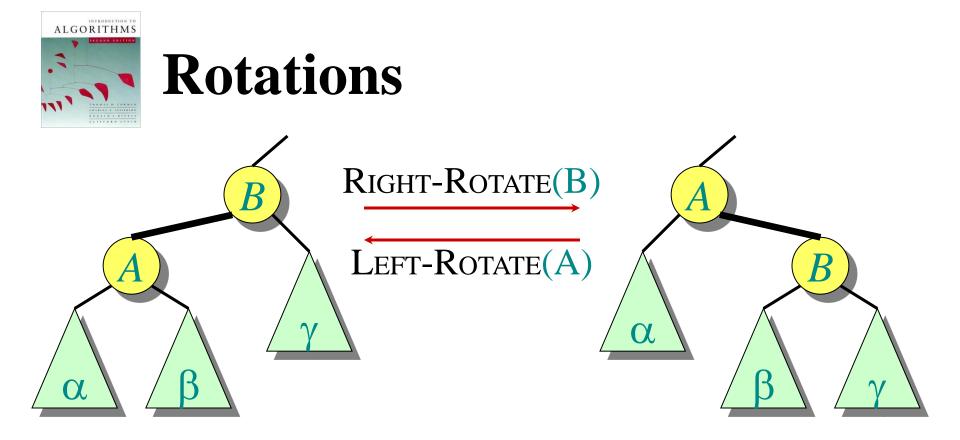




# **Modifying operations**

The operations INSERT and DELETE cause modifications to the red-black tree:

- 1. the operation itself,
- 2. color changes,
- 3. restructuring the links of the tree via *"rotations"*.



- Rotations maintain the inorder ordering of keys:  $a \in \alpha, b \in \beta, c \in \gamma \implies a \le A \le b \le B \le c.$
- Rotations maintain the binary search tree property
- A rotation can be performed in O(1) time.



## **Red-black trees**

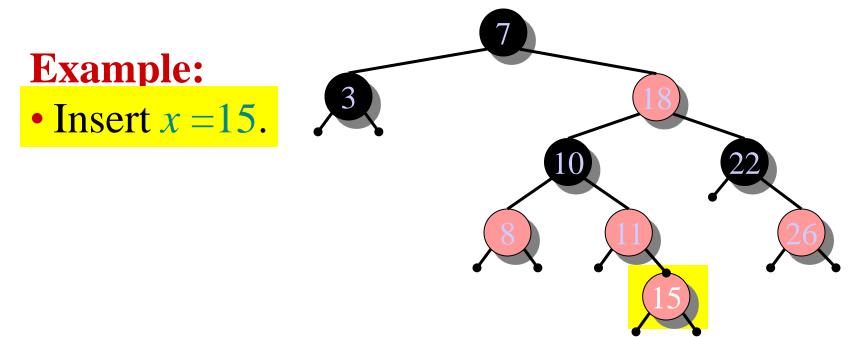
This data structure requires an extra onebit color field in each node.

### **Red-black properties:**

- 1. Every node is either red or black.
- 2. The root is black.
- 3. The leaves (NIL's) are black.
- 4. If a node is red, then both its children are black.
- 5. All simple paths from any node *x*, excluding *x*, to a descendant leaf have the same number of black nodes = black-height(*x*).



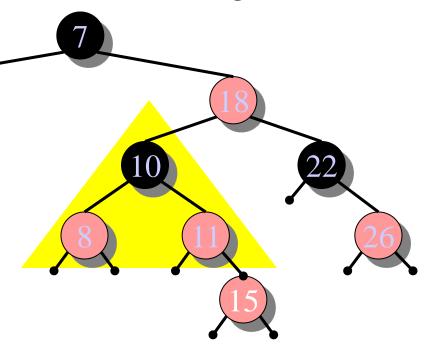
**IDEA:** Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.





**IDEA:** Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

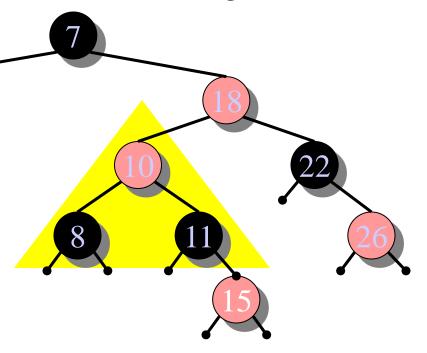
- Insert x = 15.
- Recolor, moving the violation up the tree.





**IDEA:** Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

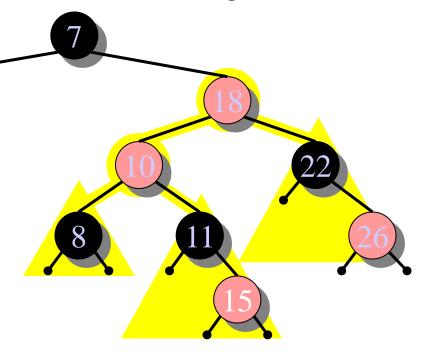
- Insert x = 15.
- Recolor, moving the violation up the tree.





**IDEA:** Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).





**IDEA:** Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).



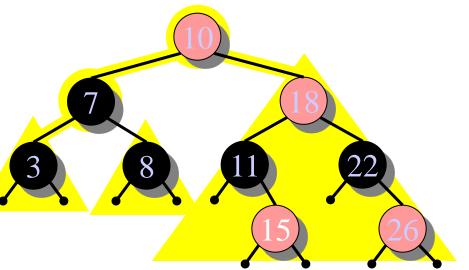
**IDEA:** Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).
- LEFT-ROTATE(7)



**IDEA:** Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

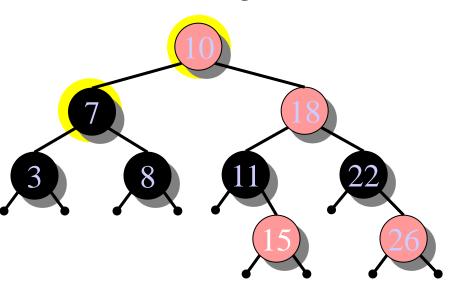
- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).
- LEFT-ROTATE(7)





**IDEA:** Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

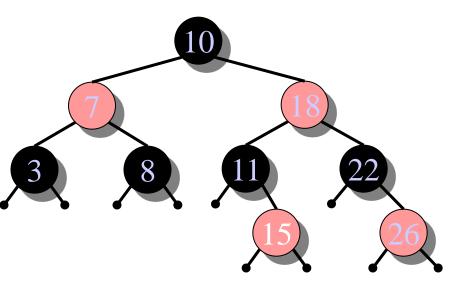
- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).
- LEFT-ROTATE(7) and recolor.





**IDEA:** Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).
- LEFT-ROTATE(7) and recolor.





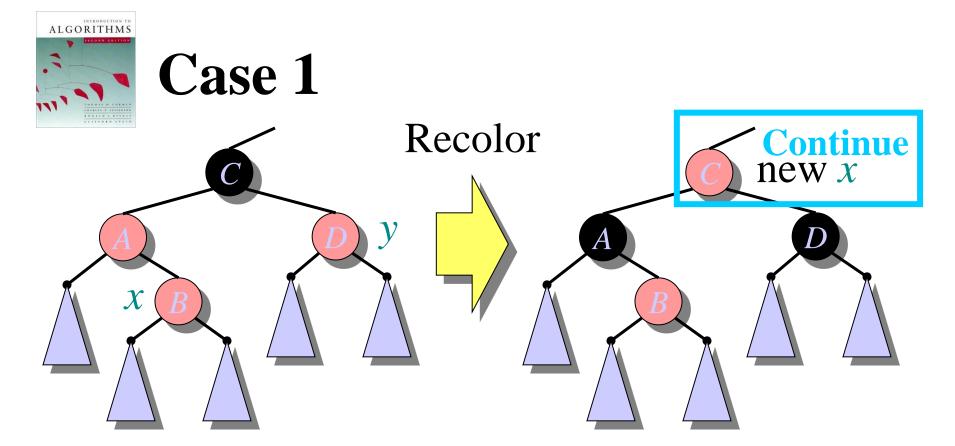
### Pseudocode

**RB-INSERT**(T, x)TREE-INSERT(T, x) $color[x] \leftarrow RED$  > only RB property 4 can be violated while  $x \neq root[T]$  and color[p[x]] = RED**do if** p[x] = left[p[p[x]]]then  $y \leftarrow right[p[p[x]]] \qquad \triangleright y = aunt/uncle of x$ **if** color[y] = REDthen  $\langle Case 1 \rangle$ else if x = right[p[x]]then  $\langle Case 2 \rangle \rightarrow Case 2$  falls into Case 3  $\langle \text{Case } 3 \rangle$ else ("then" clause with "*left*" and "*right*" swapped)  $color[root[T]] \leftarrow BLACK$ 



# **Graphical notation**

# Let A denote a subtree with a black root. All A's have the same black-height.



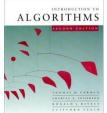
```
(Or, A's children are swapped.) Pu

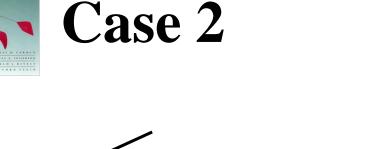
p[x] = left[p[p[x]] an

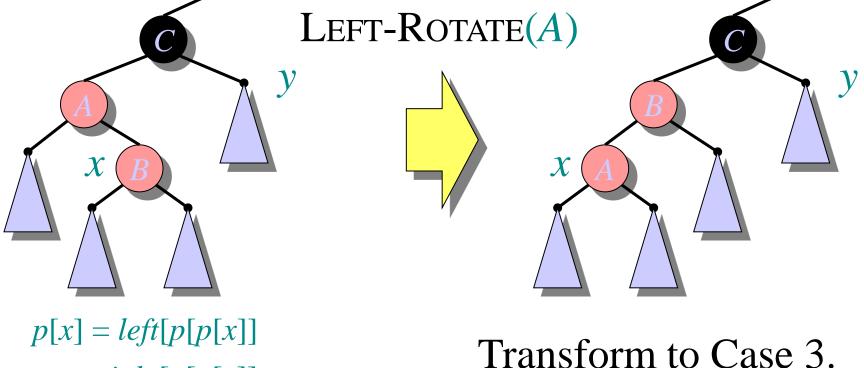
y \leftarrow right[p[p[x]] red

color[y] = RED
```

Push *C*'s black onto *A* and *D*, and recurse, since *C*'s parent may be red.



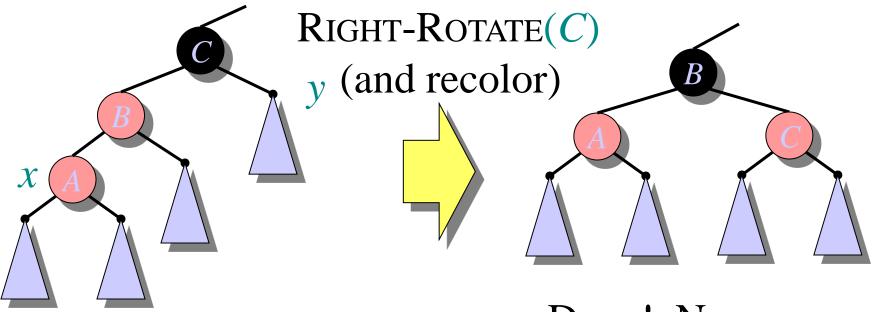




p[x] = left[p[p[x]]]  $y \leftarrow right[p[p[x]]]$  color[y] = BLACK x = right[p[x]] 2/14/12







p[x] = left[p[p[x]]]  $y \leftarrow right[p[p[x]]]$  color[y] = BLACK x = left[p[x]]2/14/12

Done! No more violations of RB property 4 are possible.



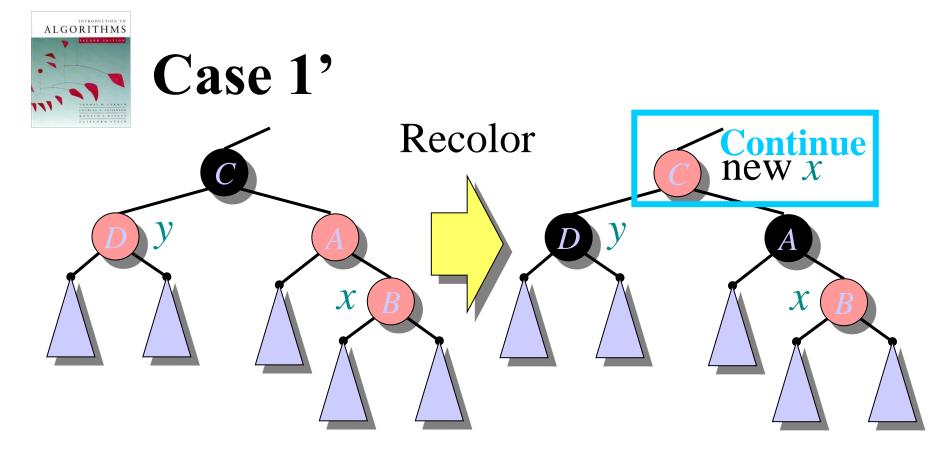
- Go up the tree performing Case 1, which only recolors nodes.
- If Case 2 or Case 3 occurs, perform 1 or 2 rotations, and terminate.

**Running time:**  $O(\log n)$  with O(1) rotations. RB-DELETE — same asymptotic running time and number of rotations as RB-INSERT (see textbook).



# Pseudocode (part II)

else ("then" clause with "left" and "right" swapped)  $\triangleright p[x] = right[p[p[x]]]$ then  $y \leftarrow left[p[p[x]]] \quad \triangleright y = aunt/uncle of x$ if color[y] = RED then (Case 1') else if x = left[p[x]]then (Case 2')  $\triangleright$  Case 2' falls into Case 3' (Case 3') color[root[T]]  $\leftarrow$  BLACK

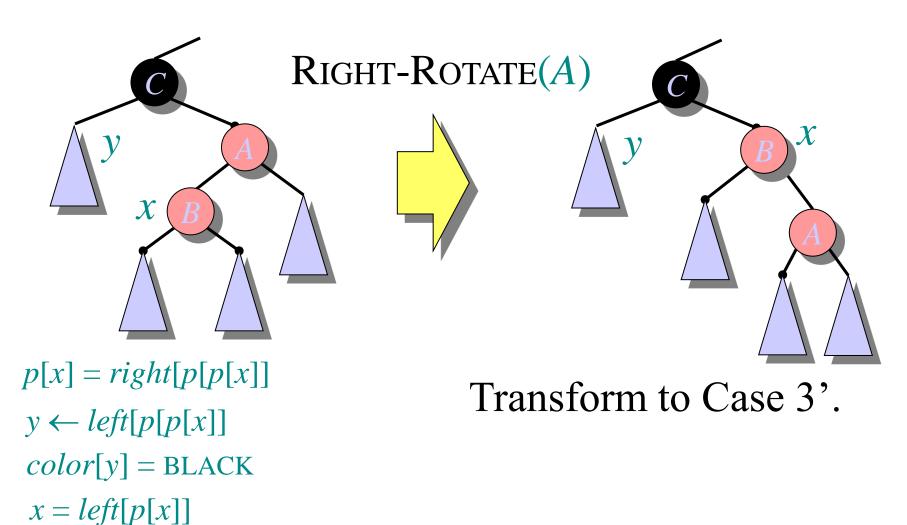


(Or, A's children are swapped.)Push (<br/>and D<br/>and D<br/>since<br/> $y \leftarrow left[p[p[x]]$  $y \leftarrow left[p[p[x]]]$ red.color[y] = RED

Push *C*'s black onto *A* and *D*, and recurse, since *C*'s parent may be red.



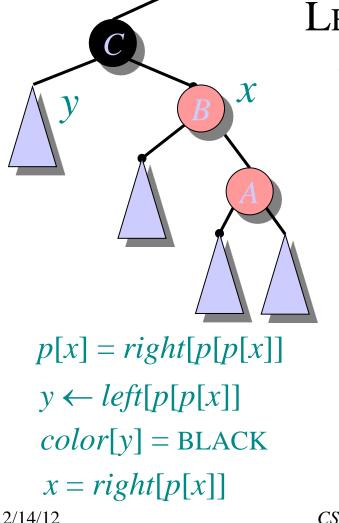




2/14/12







LEFT-ROTATE(C) (and recolor) RDone! No more violations of RB property 4 are

possible.