
2/2/12 CS 5633 Analysis of Algorithms 1

CS 5633 – Spring 2012

Randomized Algorithms & Quicksort
Carola Wenk

Slides courtesy of Charles Leiserson with small

changes by Carola Wenk

2/2/12 CS 5633 Analysis of Algorithms 2

Deterministic Algorithms

Runtime for deterministic algorithms with input
size n:

• Best-case runtime

Attained by one input of size n

• Worst-case runtime

 Attained by one input of size n

• Average runtime

 Averaged over all possible inputs of size n

2/2/12 CS 5633 Analysis of Algorithms 3

Deterministic Algorithms:

Insertion Sort
Best-case runtime: O(n), input [1,2,3,…,n]

Attained by one input of size n

• Worst-case runtime: O(n2), input [n, n-1, …,2,1]

 Attained by one input of size n

• Average runtime : O(n2); see book for analysis

 Averaged over all possible inputs of size n

•What kind of inputs are there?

• How many inputs are there?

2/2/12 CS 5633 Analysis of Algorithms 4

Average Runtime

• What kind of inputs are there?

• Do [1,2,…,n] and [5,6,…,n+5] cause
different behavior of Insertion Sort?

• No. Therefore it suffices to only consider
all permutations of [1,2,…,n] .

• How many inputs are there?

• There are n! different permutations of
[1,2,…,n]

2/2/12 CS 5633 Analysis of Algorithms 5

Average Runtime

Insertion Sort: n=4

• Runtime is proportional to: 3 + #times in while loop

• Best: 3+0, Worst: 3+6=9, Average: 3+72/24 = 6

• Inputs: 4!=24

[1,2,3,4] [4,1,2,3] [4,1,3,2] [4,3,2,1]

[2,1,3,4] [1,4,2,3] [1,4,3,2] [3,4,2,1]

[1,3,2,4] [1,2,4,3] [1,3,4,2] [3,2,4,1]

[3,1,2,4] [4,2,1,3] [4,3,1,2] [4,2,3,1]

[3,2,1,4] [2,1,4,3] [3,4,1,2] [2,4,3,1]

[2,3,1,4] [2,4,1,3] [3,1,4,2] [2,3,4,1]

0 3 4 6

1 2 3 5

1 1 2 4

2 4 5 5

3 2 4 4

2 3 3 3

2/2/12 CS 5633 Analysis of Algorithms 6

Average Runtime: Insertion

Sort
• The average runtime averages runtimes over
all n! different input permutations

• Disadvantage of considering average runtime:

• There are still worst-case inputs that will
have the worst-case runtime

• Are all inputs really equally likely? That
depends on the application

 Better: Use a randomized algorithm

2/2/12 CS 5633 Analysis of Algorithms 7

Randomized Algorithm:

Insertion Sort
• Randomize the order of the input array:

• Either prior to calling insertion sort,

• or during insertion sort (insert random element)

• This makes the runtime depend on a probabilistic
experiment (sequence of numbers obtained from
random number generator)

Runtime is a random variable (maps sequence
of random numbers to runtimes)

• Expected runtime = expected value of runtime
random variable

2/2/12 CS 5633 Analysis of Algorithms 8

Randomized Algorithm:

Insertion Sort
• Runtime is independent of input order
 ([1,2,3,4] may have good or bad runtime,
depending on sequence of random numbers)

•No assumptions need to be made about input
distribution

• No one specific input elicits worst-case behavior

• The worst case is determined only by the output
of a random-number generator.

 When possible use expected runtimes of
randomized algorithms instead of average case
analysis of deterministic algorithms

2/2/12 CS 5633 Analysis of Algorithms 9

Quicksort

• Proposed by C.A.R. Hoare in 1962.

• Divide-and-conquer algorithm.

• Sorts “in place” (like insertion sort, but not
like merge sort).

• Very practical (with tuning).

• We are going to perform an expected runtime
analysis on randomized quicksort

2/2/12 CS 5633 Analysis of Algorithms 10

Quicksort: Divide and conquer

Quicksort an n-element array:

1. Divide: Partition the array into two subarrays
around a pivot x such that elements in lower
subarray x elements in upper subarray.

2. Conquer: Recursively sort the two subarrays.

3. Combine: Trivial.

 x x x

Key: Linear-time partitioning subroutine.

2/2/12 CS 5633 Analysis of Algorithms 11

Running time
= O(n) for n
elements.

Partitioning subroutine

PARTITION(A, p, q) ⊳ A[p . . q]
x A[p] ⊳ pivot = A[p]
i p
for j p + 1 to q

do if A[j] x
then i i + 1
 exchange A[i] A[j]

exchange A[p] A[i]
return i

x x x ?

p i q j

Invariant:

2/2/12 CS 5633 Analysis of Algorithms 12

Example of partitioning

i j

6 10 13 5 8 3 2 11

2/2/12 CS 5633 Analysis of Algorithms 13

Example of partitioning

i j

6 10 13 5 8 3 2 11

2/2/12 CS 5633 Analysis of Algorithms 14

Example of partitioning

i j

6 10 13 5 8 3 2 11

2/2/12 CS 5633 Analysis of Algorithms 15

Example of partitioning

6 10 13 5 8 3 2 11

i j

6 5 13 10 8 3 2 11

2/2/12 CS 5633 Analysis of Algorithms 16

Example of partitioning

6 10 13 5 8 3 2 11

i j

6 5 13 10 8 3 2 11

2/2/12 CS 5633 Analysis of Algorithms 17

Example of partitioning

6 10 13 5 8 3 2 11

i j

6 5 13 10 8 3 2 11

2/2/12 CS 5633 Analysis of Algorithms 18

Example of partitioning

6 10 13 5 8 3 2 11

i j

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

2/2/12 CS 5633 Analysis of Algorithms 19

Example of partitioning

6 10 13 5 8 3 2 11

i j

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

2/2/12 CS 5633 Analysis of Algorithms 20

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j

6 5 3 2 8 13 10 11

2/2/12 CS 5633 Analysis of Algorithms 21

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j

6 5 3 2 8 13 10 11

2/2/12 CS 5633 Analysis of Algorithms 22

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j

6 5 3 2 8 13 10 11

2/2/12 CS 5633 Analysis of Algorithms 23

Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

6 5 3 2 8 13 10 11

i

2 5 3 6 8 13 10 11

2/2/12 CS 5633 Analysis of Algorithms 24

Pseudocode for quicksort

QUICKSORT(A, p, r)

if p < r

then q PARTITION(A, p, r)

QUICKSORT(A, p, q–1)

QUICKSORT(A, q+1, r)

Initial call: QUICKSORT(A, 1, n)

2/2/12 CS 5633 Analysis of Algorithms 25

Analysis of quicksort

• Assume all input elements are distinct.

• In practice, there are better partitioning
algorithms for when duplicate input
elements may exist.

• Let T(n) = worst-case running time on
an array of n elements.

2/2/12 CS 5633 Analysis of Algorithms 26

Worst-case of

quicksort

• Input sorted or reverse sorted.

• Partition around min or max element.

• One side of partition always has no elements.

)(

)()1(

)()1()1(

)()1()0()(

2n

nnT

nnT

nnTTnT

(arithmetic series)

2/2/12 CS 5633 Analysis of Algorithms 27

Worst-case recursion tree

T(n) = T(0) + T(n–1) + cn

2/2/12 CS 5633 Analysis of Algorithms 28

Worst-case recursion tree

T(n) = T(0) + T(n–1) + cn

T(n)

2/2/12 CS 5633 Analysis of Algorithms 29

cn

T(0) T(n–1)

Worst-case recursion tree

T(n) = T(0) + T(n–1) + cn

2/2/12 CS 5633 Analysis of Algorithms 30

cn

T(0) c(n–1)

Worst-case recursion tree

T(n) = T(0) + T(n–1) + cn

T(0) T(n–2)

2/2/12 CS 5633 Analysis of Algorithms 31

cn

T(0) c(n–1)

Worst-case recursion tree

T(n) = T(0) + T(n–1) + cn

T(0) c(n–2)

T(0)

(1)

2/2/12 CS 5633 Analysis of Algorithms 32

cn

T(0) c(n–1)

Worst-case recursion tree

T(n) = T(0) + T(n–1) + cn

T(0) c(n–2)

T(0)

T(0)

 2

1

nk
k

height

height = n

2/2/12 CS 5633 Analysis of Algorithms 33

cn

T(0) c(n–1)

Worst-case recursion tree

T(n) = T(0) + T(n–1) + cn

T(0) c(n–2)

T(0)

T(0)

 2

1

nk
k

n

height = n

2/2/12 CS 5633 Analysis of Algorithms 34

cn

c(n–1)

Worst-case recursion tree

T(n) = T(0) + T(n–1) + cn

c(n–2)

(1)

 2

1

nk
k

n

height = n

(1)

(1)

(1)
T(n) = (n) + (n2)

 = (n2)

2/2/12 CS 5633 Analysis of Algorithms 35

Best-case analysis
(For intuition only!)

If we’re lucky, PARTITION splits the array evenly:

T(n) = 2T(n/2) + (n)

 = (n log n) (same as merge sort)

What if the split is always
10

9

10

1 : ?

)()(
10

9

10
1 nnTnTnT

What is the solution to this recurrence?

2/2/12 CS 5633 Analysis of Algorithms 36

Analysis of “almost-best” case

)(nT

2/2/12 CS 5633 Analysis of Algorithms 37

Analysis of “almost-best” case

cn

 nT
10
1 nT

10

9

2/2/12 CS 5633 Analysis of Algorithms 38

Analysis of “almost-best” case

cn

cn
10
1 cn

10

9

 nT
100

1 nT
100

9 nT
100

9 nT
100

81

2/2/12 CS 5633 Analysis of Algorithms 39

Analysis of “almost-best” case

cn

cn
10
1 cn

10

9

cn
100

1 cn
100

9 cn
100

9 cn
100

81

(1)

(1)

log10/9n

cn

cn

cn

…

O(n) leaves

2/2/12 CS 5633 Analysis of Algorithms 40

log10

n

Analysis of “almost-best” case

cn

cn
10
1 cn

10

9

cn
100

1 cn
100

9 cn
100

9 cn
100

81

(1)

(1)

log10/9n

cn

cn

cn

T(n) cn log10/9n + O(n)

…

cn log10n

O(n) leaves

(n log n)

2/2/12 CS 5633 Analysis of Algorithms 41

Quicksort Runtimes

• Best case runtime Tbest(n) O(n log n)

• Worst case runtime Tworst(n) O(n2)

• Worse than mergesort? Why is it called
quicksort then?

• Its average runtime Tavg(n) O(n log n)

• Better even, the expected runtime of
randomized quicksort is O(n log n)

2/2/12 CS 5633 Analysis of Algorithms 42

Average Runtime

The average runtime Tavg(n) for Quicksort is
 the average runtime over all possible inputs
 of length n.

• Tavg(n) has to average the runtimes over all n!
different input permutations.

• There are still worst-case inputs that will
have a O(n2) runtime

 Better: Use randomized quicksort

2/2/12 CS 5633 Analysis of Algorithms 43

Randomized quicksort

IDEA: Partition around a random element.

• Running time is independent of the input
order. It depends only on the sequence s
of random numbers.

• No assumptions need to be made about
the input distribution.

• No specific input elicits the worst-case
behavior.

• The worst case is determined only by the
sequence s of random numbers.

2/2/12 CS 5633 Analysis of Algorithms 44

Randomized quicksort

analysis
• T(n,s) = random variable for the running time
of randomized quicksort on an input of size n,
with sequence s of random numbers which are
assumed to be independent.

• E(T(n)) = expected value of T(n,s), the
“expected runtime” of randomized quicksort.

T(n,s) =

T(0,s) + T(n–1,s) + (n) if 0 : n–1 split,

T(1,s) + T(n–2,s) + (n) if 1 : n–2 split,

T(n–1,s) + T(0,s) + (n) if n–1 : 0 split,

2/2/12 CS 5633 Analysis of Algorithms 45

Randomized quicksort

analysis

For k = 0, 1, …, n–1, define the indicator
random variable

Xk (s)=
1 if PARTITION generates a k : n–k–1 split,

0 otherwise.

E[Xk] = Pr{Xk = 1} = 1/n, since all splits are
equally likely, assuming elements are distinct.

2/2/12 CS 5633 Analysis of Algorithms 46

Analysis (continued)

1

0

)(),1(),()(
n

k

k nsknTskTsX

T(n,s) =

T(0,s) + T(n–1,s) + (n) if 0 : n–1 split,

T(1,s) + T(n–2,s) + (n) if 1 : n–2 split,

T(n–1,s) + T(0,s) + (n) if n–1 : 0 split,

2/2/12 CS 5633 Analysis of Algorithms 47

Calculating expectation

1

0

)()1()()]([
n

k
k nknTkTXEnTE

Take expectations of both sides.

2/2/12 CS 5633 Analysis of Algorithms 48

Calculating expectation

1

0

1

0

)()1()(

)()1()()]([

n

k
k

n

k
k

nknTkTXE

nknTkTXEnTE

Linearity of expectation.

2/2/12 CS 5633 Analysis of Algorithms 49

Calculating expectation

1

0

1

0

1

0

)()1()(

)()1()(

)()1()()]([

n

k
k

n

k
k

n

k
k

nknTkTEXE

nknTkTXE

nknTkTXEnTE

Independence of Xk from other random
choices.

2/2/12 CS 5633 Analysis of Algorithms 50

Calculating expectation

1

0

1

0

1

0

1

0

1

0

1

0

)(1)1(1)(1

)()1()(

)()1()(

)()1()()]([

n

k

n

k

n

k

n

k
k

n

k
k

n

k
k

n
n

knTE
n

kTE
n

nknTkTEXE

nknTkTXE

nknTkTXEnTE

Linearity of expectation; E[Xk] = 1/n .

2/2/12 CS 5633 Analysis of Algorithms 51

Calculating expectation

)()(
2

)(
1

)1(
1

)(
1

)()1()(

)()1()(

)()1()()]([

1

0

1

0

1

0

1

0

1

0

1

0

1

0

nkTE
n

n
n

knTE
n

kTE
n

nknTkTEXE

nknTkTXE

nknTkTXEnTE

n

k

n

k

n

k

n

k

n

k

k

n

k

k

n

k

k

Summations have
identical terms.

2/2/12 CS 5633 Analysis of Algorithms 52

Hairy recurrence

)()(2)]([
1

2

nkTE
n

nTE
n

k

(The k = 0, 1 terms can be absorbed in the (n).)

Prove: E[T(n)] a n log n for constant a > 0 .

Use fact: 2
1

2

8
12

2
1 loglog nnnkk

n

k

 (exercise).

• Choose a large enough so that a n log n
dominates E[T(n)] for sufficiently small n 2.

2/2/12 CS 5633 Analysis of Algorithms 53

Substitution method

)(log
2

)(
1

2

nkak
n

nTE
n

k

Substitute inductive hypothesis.

2/2/12 CS 5633 Analysis of Algorithms 54

Substitution method

)(
8

1
log

2

12

)(log
2

)(

22

1

2

nnnn
n

a

nkak
n

nTE
n

k

Use fact.

2/2/12 CS 5633 Analysis of Algorithms 55

Substitution method

)(
4

log

)(
8

1
log

2

12

)(log
2

)(

22

1

2

n
an

nan

nnnn
n

a

nkak
n

nTE
n

k

Express as desired – residual.

2/2/12 CS 5633 Analysis of Algorithms 56

Substitution method

nan

n
an

nan

nnnn
n

a

nkak
n

nTE
n

k

log

)(
4

log

)(
8

1
log

2

12

)(log
2

)(

22

1

2

if a is chosen large enough so that
an/4 dominates the (n).

,

2/2/12 CS 5633 Analysis of Algorithms 57

Quicksort in practice

• Quicksort is a great general-purpose
sorting algorithm.

• Quicksort is typically over twice as fast
as merge sort.

• Quicksort can benefit substantially from
code tuning.

• Quicksort behaves well even with
caching and virtual memory.

2/2/12 CS 5633 Analysis of Algorithms 58

Average Runtime vs. Expected

Runtime
• Average runtime is averaged over all inputs of a
deterministic algorithm.

• Expected runtime is the expected value of the
runtime random variable of a randomized
algorithm. It effectively “averages” over all
sequences of random numbers.

• De facto both analyses are very similar.
However in practice the randomized algorithm
ensures that not one single input elicits worst case
behavior.

