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Deterministic Algorithms 

Runtime for deterministic algorithms with input 
size n: 

• Best-case runtime 

Attained by one input of size n 

• Worst-case runtime 

 Attained by one input of size n 

• Average runtime 

 Averaged over all possible inputs of size n 
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Deterministic Algorithms: 

Insertion Sort 
Best-case runtime: O(n), input [1,2,3,…,n] 

Attained by one input of size n 

• Worst-case runtime: O(n2), input [n, n-1, …,2,1] 

 Attained by one input of size n 

• Average runtime : O(n2); see book for analysis 

 Averaged over all possible inputs of size n 

•What kind of inputs are there?  

• How many inputs are there? 
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Average Runtime 

• What kind of inputs are there?  

• Do [1,2,…,n] and [5,6,…,n+5] cause 
different behavior of Insertion Sort? 

• No. Therefore it suffices to only consider 
all permutations of [1,2,…,n] . 

• How many inputs are there? 

• There are n! different permutations of 
[1,2,…,n] 
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Average Runtime  

Insertion Sort: n=4 

• Runtime is proportional to: 3 + #times in while loop 

• Best: 3+0, Worst: 3+6=9, Average: 3+72/24 = 6 

• Inputs: 4!=24  

[1,2,3,4] [4,1,2,3] [4,1,3,2] [4,3,2,1] 

[2,1,3,4] [1,4,2,3] [1,4,3,2] [3,4,2,1] 

[1,3,2,4] [1,2,4,3] [1,3,4,2] [3,2,4,1] 

[3,1,2,4] [4,2,1,3] [4,3,1,2] [4,2,3,1] 

[3,2,1,4] [2,1,4,3] [3,4,1,2] [2,4,3,1] 

[2,3,1,4] [2,4,1,3] [3,1,4,2] [2,3,4,1] 

0 3 4 6 

1 2 3 5 

1 1 2 4 

2 4 5 5 

3 2 4 4 

2 3 3 3 
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Average Runtime: Insertion 

Sort 
• The average runtime averages runtimes over 
all n! different input permutations 

• Disadvantage of considering average runtime:  

• There are still worst-case inputs that will 
have the worst-case runtime 

• Are all inputs really equally likely? That 
depends on the application 

 Better: Use a randomized algorithm 
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Randomized Algorithm: 

Insertion Sort 
• Randomize the order of the input array: 

• Either prior to calling insertion sort,  

• or during insertion sort (insert random element) 

• This makes the runtime depend on a probabilistic 
experiment (sequence of numbers obtained from 
random number generator) 

Runtime is a random variable (maps sequence 
of random numbers to runtimes) 

• Expected runtime = expected value of runtime 
random variable 
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Randomized Algorithm: 

Insertion Sort 
• Runtime is independent of input order 
 ([1,2,3,4] may have good or bad runtime, 
depending on sequence of random numbers) 

•No assumptions need to be made about input 
distribution 

• No one specific input elicits worst-case behavior 

• The worst case is determined only by the output 
of a random-number generator. 

 When possible use expected runtimes of 
randomized algorithms instead of average case 
analysis of deterministic algorithms 
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Quicksort 

• Proposed by C.A.R. Hoare in 1962. 

• Divide-and-conquer algorithm. 

• Sorts “in place” (like insertion sort, but not 
like merge sort). 

• Very practical (with tuning). 

• We are going to perform an expected runtime 
analysis on randomized quicksort 
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Quicksort: Divide and conquer 

Quicksort an n-element array: 

1. Divide: Partition the array into two subarrays 
around a pivot x such that elements in lower 
subarray  x  elements in upper subarray. 

 

2. Conquer: Recursively sort the two subarrays. 

3. Combine: Trivial. 

 x x  x 

Key: Linear-time partitioning subroutine. 
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Running time 
= O(n) for n 
elements. 

Partitioning subroutine 

PARTITION(A, p, q) ⊳ A[ p . . q]  
x  A[ p] ⊳ pivot = A[ p] 
i  p 
for j  p + 1 to q 

do if A[ j]  x 
then i  i + 1 
 exchange A[i]  A[ j] 

exchange A[ p]  A[i] 
return i 

x  x  x ? 

p i q j 

Invariant: 



2/2/12 CS 5633 Analysis of Algorithms 12 

Example of partitioning 

i j 

6 10 13 5 8 3 2 11 
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Example of partitioning 

6 10 13 5 8 3 2 11 

6 5 3 10 8 13 2 11 

6 5 13 10 8 3 2 11 

i j 

6 5 3 2 8 13 10 11 



2/2/12 CS 5633 Analysis of Algorithms 21 

Example of partitioning 
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Example of partitioning 
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Example of partitioning 

6 10 13 5 8 3 2 11 

6 5 3 10 8 13 2 11 

6 5 13 10 8 3 2 11 

6 5 3 2 8 13 10 11 

i 

2 5 3 6 8 13 10 11 
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Pseudocode for quicksort 

QUICKSORT(A, p, r) 

if p < r 

then q  PARTITION(A, p, r) 

QUICKSORT(A, p, q–1) 

QUICKSORT(A, q+1, r) 

Initial call: QUICKSORT(A, 1, n) 
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Analysis of quicksort 

• Assume all input elements are distinct. 

• In practice, there are better partitioning 
algorithms for when duplicate input 
elements may exist. 

• Let T(n) = worst-case running time on 
an array of n elements. 
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Worst-case of  

quicksort 

• Input sorted or reverse sorted. 

• Partition around min or max element. 

• One side of partition always has no elements. 
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Worst-case recursion tree 

T(n) = T(0) + T(n–1) + cn 
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Worst-case recursion tree 

T(n) = T(0) + T(n–1) + cn 

T(n) 
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cn 

T(0) T(n–1) 

Worst-case recursion tree 

T(n) = T(0) + T(n–1) + cn 
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cn 

T(0) c(n–1) 

Worst-case recursion tree 

T(n) = T(0) + T(n–1) + cn 

T(0) T(n–2) 
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cn 

T(0) c(n–1) 

Worst-case recursion tree 

T(n) = T(0) + T(n–1) + cn 

T(0) c(n–2) 

T(0) 

(1) 
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cn 

T(0) c(n–1) 

Worst-case recursion tree 

T(n) = T(0) + T(n–1) + cn 

T(0) c(n–2) 

T(0) 

T(0) 
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height 

height = n 
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cn 

T(0) c(n–1) 

Worst-case recursion tree 

T(n) = T(0) + T(n–1) + cn 

T(0) c(n–2) 

T(0) 

T(0) 
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cn 

c(n–1) 

Worst-case recursion tree 

T(n) = T(0) + T(n–1) + cn 

c(n–2) 

(1) 

 2
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height = n 
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(1) 
T(n) = (n) + (n2) 

 = (n2) 
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Best-case analysis 
(For intuition only!) 

If we’re lucky, PARTITION splits the array evenly: 

T(n) = 2T(n/2) + (n) 

 = (n log n) (same as merge sort) 

What if the split is always 
10

9

10

1 : ? 

    )()(
10

9

10
1 nnTnTnT 

What is the solution to this recurrence? 
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Analysis of “almost-best” case 

)(nT
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Analysis of “almost-best” case 

cn

 nT
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1  nT

10

9
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Analysis of “almost-best” case 
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Analysis of “almost-best” case 
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log10

n 

Analysis of “almost-best” case 
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Quicksort Runtimes 

• Best case runtime Tbest(n)  O(n log n) 

• Worst case runtime Tworst(n)  O(n2) 
 

• Worse than mergesort? Why is it called 
quicksort then? 

• Its average runtime Tavg(n)  O(n log n ) 

• Better even, the expected runtime of 
randomized quicksort is O(n log n) 
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Average Runtime 

The average runtime Tavg(n) for Quicksort is 
 the average runtime over all possible inputs   
 of length n. 

• Tavg(n) has to average the runtimes over all n! 
different input permutations. 

• There are still worst-case inputs that will 
have a O(n2) runtime 

 Better: Use randomized quicksort 
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Randomized quicksort 

IDEA: Partition around a random element. 

• Running time is independent of the input 
order. It depends only on the sequence s 
of random numbers. 

• No assumptions need to be made about 
the input distribution. 

• No specific input elicits the worst-case 
behavior. 

• The worst case is determined only by the 
sequence s of random numbers. 
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Randomized quicksort 

analysis 
• T(n,s)  = random variable for the running time 
of randomized quicksort on an input of size n, 
with sequence s of random numbers which are 
assumed to be independent. 

• E(T(n)) = expected value of T(n,s), the 
“expected runtime” of randomized quicksort. 

T(n,s) =  

T(0,s) + T(n–1,s) + (n) if 0 : n–1 split, 

T(1,s) + T(n–2,s) + (n) if 1 : n–2 split, 

  

T(n–1,s) + T(0,s) + (n) if n–1 : 0 split, 
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Randomized quicksort 

analysis 

For k = 0, 1, …, n–1, define the indicator 
random variable 

Xk (s)=  
1 if PARTITION generates a k : n–k–1 split, 

0 otherwise. 

E[Xk] = Pr{Xk = 1} = 1/n, since all splits are 
equally likely, assuming elements are distinct. 
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Analysis (continued) 
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T(n,s) =  

T(0,s) + T(n–1,s) + (n) if 0 : n–1 split, 

T(1,s) + T(n–2,s) + (n) if 1 : n–2 split, 

  

T(n–1,s) + T(0,s) + (n) if n–1 : 0 split, 



2/2/12 CS 5633 Analysis of Algorithms 47 

Calculating expectation 
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Take expectations of both sides. 
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Calculating expectation 
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Linearity of expectation. 
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Calculating expectation 
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Independence of Xk from other random 
choices. 
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Calculating expectation 
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Linearity of expectation; E[Xk] = 1/n . 
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Calculating expectation 
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Summations have 
identical terms. 
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Hairy recurrence 
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(The k = 0, 1 terms can be absorbed in the (n).) 

Prove: E[T(n)]  a n log n for constant a > 0 . 

Use fact:  2
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 (exercise). 

• Choose a large enough so that a n log n 
dominates E[T(n)] for sufficiently small n  2. 
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Substitution method 
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Substitute inductive hypothesis. 
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Substitution method 
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Substitution method 
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Express as desired – residual. 
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Substitution method 
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if a is chosen large enough so that 
an/4 dominates the (n). 

, 
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Quicksort in practice 

• Quicksort is a great general-purpose 
sorting algorithm. 

• Quicksort is typically over twice as fast 
as merge sort. 

• Quicksort can benefit substantially from 
code tuning.   

• Quicksort behaves well even with 
caching and virtual memory. 
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Average Runtime vs. Expected 

Runtime 
• Average runtime is averaged over all inputs of a 
deterministic algorithm. 

• Expected runtime is the expected value of the 
runtime random variable of a randomized 
algorithm. It effectively “averages” over all 
sequences of random numbers. 

 

• De facto both analyses are very similar. 
However in practice the randomized algorithm 
ensures that not one single input elicits worst case 
behavior. 


