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The divide-and-conquer 
design paradigm

1. Divide the problem (instance) into 
subproblems of sizes that are fractions of the p
original problem size.

2. Conquer the subproblems by solving them2. Conquer the subproblems by solving them 
recursively.

3. Combine subproblem solutions3. Combine subproblem solutions.
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Binary searchBinary search

Fi d l t i t dFind an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3 Combine: Trivial

Example: Find 9

3. Combine: Trivial.

3 5 7 8 9 12 15
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Merge sortMerge sort
1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays of size n/2
3 Combine: Linear time key subroutine MERGE

MERGE-SORT (A[1 n])

3. Combine: Linear-time key subroutine MERGE

MERGE-SORT (A[1 . . n])
1. If n = 1, done.
2 MERGE-SORT (A[ 1 ⎡n/2⎤ ])2. MERGE-SORT (A[ 1 . . ⎡n/2⎤ ])
3. MERGE-SORT (A[ ⎡n/2⎤+1 . . n ])
4 “Merge” the 2 sorted lists
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4. Merge the 2 sorted lists.



Merging two sorted arraysMerging two sorted arrays
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Time dn ∈ Θ(n) to merge a total 
of n elements (linear time)
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of n elements (linear time).



Analyzing merge sortAnalyzing merge sort

MERGE-SORT (A[1 . . n])
1. If n = 1, done.

T(n)
d0

2. MERGE-SORT (A[ 1 . . ⎡n/2⎤ ])
3. MERGE-SORT (A[ ⎡n/2⎤+1 . . n ])

T(n/2)
T(n/2)

4. “Merge” the 2 sorted lists.dn

Sloppiness: Should be T( ⎡n/2⎤ ) + T( ⎣n/2⎦ ) , 
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but it turns out not to matter asymptotically.



Recurrence for merge sortRecurrence for merge sort

d if n = 1;
T(n) =

d0 if n  1;
2T(n/2) + dn if n > 1.

• But what does T(n) solve to? I.e., is it 
O(n) or O(n2) or O(n3) or …?
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Recursion treeRecursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.Solve T(n)  2T(n/2)  dn, where d  0 is constant.

T(n)
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Recursion treeRecursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.Solve T(n)  2T(n/2)  dn, where d  0 is constant.

dn

T(n/2) T(n/2)
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Recursion treeRecursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.Solve T(n)  2T(n/2)  dn, where d  0 is constant.

dn

T( /4) T( /4) T( /4) T( /4)

dn/2 dn/2

T(n/4) T(n/4) T(n/4) T(n/4)
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Recursion treeRecursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.Solve T(n)  2T(n/2)  dn, where d  0 is constant.

dn dn

d /4 d /4 d /4 d /4

dn/2 dn/2

h = log n

dn

ddn/4 dn/4 dn/4 dn/4h = log n dn

…

d0

…

#leaves = n d0n
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Total dn log n + d0n



Mergesort ConclusionsMergesort Conclusions

M i Θ( l ) i• Merge sort runs in Θ(n log n) time.
• Θ(n log n) grows more slowly than Θ(n2).
• Therefore, merge sort asymptotically beats 

insertion sort in the worst case.
• In practice, merge sort beats insertion sort 

for n > 30 or so. (Why not earlier?)( y )
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Recursion-tree methodRecursion-tree method

• A recursion tree models the costs (time) of a• A recursion tree models the costs (time) of a 
recursive execution of an algorithm.

• The recursion tree method can be unreliable• The recursion-tree method can be unreliable, 
just like any method that uses ellipses (…).

• It is good for generating guesses of what the• It is good for generating guesses of what the 
runtime could be. 

But: Need to verify that the guess is correct.
→ Induction (substitution method)
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Substitution methodSubstitution method
The most general method to solve a recurrenceThe most general method to solve a recurrence 
(prove O and Ω separately):

1. Guess the form of the solution:
(e.g. using recursion trees, or expansion)

2. Verify by induction (inductive step).
3. Solve for O-constants n0 and c (base case of 

induction)
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Powering a numberPowering a number

Problem: Compute a n where n ∈ NProblem: Compute a n, where n ∈ N.

Naive algorithm: Θ(n).

Divide-and-conquer algorithm: (recursive squaring)

a n =
a n/2 ⋅ a n/2 if n is even;
a (n–1)/2 ⋅ a (n–1)/2 ⋅ a if n is odd.

T(n) = T(n/2) + Θ(1)  ⇒ T(n) = Θ(log n) . 
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Matrix multiplicationMatrix multiplication

Input: A = [a ] B = [b ]Input: A = [aij], B = [bij].
Output: C = [cij] = A⋅ B. i, j = 1, 2,… , n.

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

⋅
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

=
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

n

n

n

n

n

n

bbb
bbb

aaa
aaa

ccc
ccc

L

L

L

L

L

L

22221

11211

22221

11211

22221

11211

⎥
⎥

⎦
⎢
⎢

⎣
⎥
⎥

⎦
⎢
⎢

⎣
⎥
⎥

⎦
⎢
⎢

⎣ nnnnnnnnnnnn bbbaaaccc L

MOMM

L

MOMM

L

MOMM

212121

∑ ⋅=
n

kjikij bac

1/24/12 CS 5633 Analysis of Algorithms 21

=k
jj

1



Standard algorithmStandard algorithm

for i ← 1 to nfor i ← 1 to n
do for j ← 1 to n

do c ← 0do cij ← 0
for k ← 1 to n

do c ← c + a bdo cij ← cij + aik⋅ bkj

Running time = Θ(n3)Running time  Θ(n )

1/24/12 CS 5633 Analysis of Algorithms 22



Divide-and-conquer algorithmDivide-and-conquer algorithm
IDEA:
n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices:
IDEA:

⎤⎡⎤⎡⎤⎡ febasr
⎥⎦

⎤
⎢⎣

⎡⋅⎥⎦

⎤
⎢⎣

⎡=⎥⎦

⎤
⎢⎣

⎡
hg
fe

dc
ba

ut
sr

C = A ⋅ B
r = a·e+b·g
s = a·f+ b·h
t = c·e+d·g

8 recursive mults of (n/2)×(n/2) submatrices 
4 adds of (n/2)×(n/2) submatrices 
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u = c·f +d·h



Analysis of D&C algorithmAnalysis of D&C algorithm

T( ) 8 T( /2) + Θ( 2)

# b k ddi

T(n) = 8 T(n/2) + Θ(n2)

# submatrices
submatrix size

work adding 
submatrices

Solves to T(n) = Θ(n3) = Θ(nlog 8) 

No better than the ordinary matrix 
l i li i l i h
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Strassen’s ideaStrassen s idea
• Multiply 2×2 matrices with only 7 recursive mults. u t p y at ces w t o y 7 ecu s ve u ts.

P1 = a ⋅ ( f – h)
P ( + b) h

r = P5 + P4 – P2 + P6
P + PP2 = (a + b) ⋅ h

P3 = (c + d) ⋅ e
P d ( )

s = P1 + P2
t = P3 + P4

P + P P P

7 mults 18 adds/subs

P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P (b d) ( + h)

u = P5 + P1 – P3 – P7

7 mults, 18 adds/subs.
Note: No reliance on 
commutativity of mult!

P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f )
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Strassen’s ideaStrassen s idea
• Multiply 2×2 matrices with only 7 recursive mults. u t p y at ces w t o y 7 ecu s ve u ts.

P1 = a ⋅ ( f – h)
P ( + b) h

r = P5 + P4 – P2 + P6
( + d) ( + h)P2 = (a + b) ⋅ h

P3 = (c + d) ⋅ e
P d ( )

= (a + d) (e + h) 
+ d (g – e) – (a + b) h
+ (b d) ( + h)P4 = d ⋅ (g – e)

P5 = (a + d) ⋅ (e + h)
P (b d) ( + h)

+ (b – d) (g + h)
= ae + ah + de + dh 

+ d d h bhP6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f )

+ dg –de – ah – bh
+ bg + bh – dg – dh

+ b
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Strassen’s algorithmStrassen s algorithm
1. Divide: Partition A and B into 

(n/2)×(n/2) submatrices.  Form P-terms 
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of 
(n/2)×(n/2) submatrices recursively.

3. Combine: Form C using + and – on 
(n/2)×(n/2) submatrices.( ) ( )

T(n) = 7 T(n/2) + Θ(n2)
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Analysis of StrassenAnalysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)T(n)  7 T(n/2)  Θ(n )

Solves to T(n) = Θ(nlog 7)

The number 2.81 may not seem much smaller than 
3, but because the difference is in the exponent, the 3, bu because e d e e ce s e e po e , e
impact on running time is significant.  In fact, 
Strassen’s algorithm beats the ordinary algorithm 

B t t d t ( f th ti l i t t l ) Θ( 2 376 )

g y g
on today’s machines for n ≥ 30 or so.
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Best to date (of theoretical interest only): Θ(n2.376L).



The divide-and-conquer 
design paradigm

1. Divide the problem (instance) into 
subproblems of sizes that are fractions of the p
original problem size.

2. Conquer the subproblems by solving them2. Conquer the subproblems by solving them 
recursively.

3. Combine subproblem solutions3. Combine subproblem solutions.

⇒ Runtime recurrences 
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The master methodThe master method

The master method applies to recurrences of 
the formthe form

T(n) = a T(n/b) + f (n) , 
where a ≥ 1, b > 1, and f is asymptotically 
positive.
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Example: merge sortExample: merge sort
1. Divide: Trivial.
2. Conquer: Recursively sort a=2

subarrays of size n/2=n/by
3. Combine: Linear-time merge, runtime 

f(n)∈O(n)f(n)∈O(n)

T(n) = 2 T(n/2) + O(n)
k di idi# subproblems subproblem size work dividing 

and combining
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T(n) = a T(n/b) + f(n)



Master TheoremMaster Theorem
T(n) = a T(n/b) + f (n)

CASE 1:
f (n) = O(nlogba – ε) ⇒ T(n) = Θ(nlogba)

CASE 2:
f (n) = Θ(nlogba logkn) ⇒ T(n) = Θ(nlogba logk+1n)f (n) = Θ(n gb log n) ⇒ T(n) = Θ(n gb log n)

CASE 3:
f (n) = Ω(nlogba + ε) 
and a f (n/b) ≤ c f (n) ⇒ T(n) = Θ( f (n))

1/24/12 CS 5633 Analysis of Algorithms 32

for some constant c < 1



How to apply the theoremHow to apply the theorem
Compare f (n) with nlogba:Compare f (n) with n :

1. f (n) = O(nlogba – ε) for some constant ε > 0.
• f (n) grows polynomially slower than nlogba

(by an nε factor).
Solution: T(n) = Θ(nlogba) .

2 f ( ) Θ( logba l k ) f t t k ≥ 02. f (n) = Θ(nlogba logkn) for some constant k ≥ 0.
• f (n) and nlogba grow at similar rates.
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Solution: T(n) = Θ(nlogba logk+1n) .



How to apply the theoremHow to apply the theorem
Compare f (n) with nlogba:

3. f (n) = Ω(nlogba + ε) for some constant ε > 0.

Compare f (n) with n :

f ( ) ( )
• f (n) grows polynomially faster than nlogba (by 

an nε factor),),
and f (n) satisfies the regularity condition that 
a f (n/b) ≤ c f (n) for some constant c < 1.a f (n/b) ≤ c f (n) for some constant c  1.
Solution: T(n) = Θ( f (n)) .
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Example: merge sortExample: merge sort

1 Divide: Trivial1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + O(n)T(n) = 2 T(n/2) + O(n)
# subproblems subproblem size work dividing 

and combiningand combining
nlogba = nlog22 = n1 = n ⇒ CASE 2 (k = 0)

⇒ T(n) = Θ(n log n) .
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⇒ T(n)  Θ(n log n) . 



Example: binary searchExample: binary search

T( ) 1 T( /2) + Θ(1)T(n) = 1 T(n/2) + Θ(1)

# b bl k di idi# subproblems
subproblem size

work dividing 
and combining

nlogba = nlog21 = n0 = 1 ⇒ CASE 2 (k = 0)nlogba = nlog21 = n0 = 1 ⇒ CASE 2 (k = 0)
⇒ T(n) = Θ(log n) . 
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Matrix multiplication:
Divide-and-conquer algorithm

IDEA:
n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices:
IDEA:
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Matrix multiplication:
Analysis of D&C algorithm

T( ) 8 T( /2) + Θ( 2)

# b k ddi

T(n) = 8 T(n/2) + Θ(n2)

# submatrices
submatrix size

work adding 
submatrices

nlogba = nlog28 = n3 ⇒ CASE 1 ⇒ T(n) = Θ(n3) 

No better than the ordinary matrix 
l i li i l i h
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Strassen’s algorithmStrassen s algorithm
1. Divide: Partition A and B into 

(n/2)×(n/2) submatrices.  Form P-terms 
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of 
(n/2)×(n/2) submatrices recursively.

3. Combine: Form C using + and – on 
(n/2)×(n/2) submatrices.( ) ( )

T(n) = 7 T(n/2) + Θ(n2)
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nlogba = nlog27 ≈ n2.81 ⇒ CASE 1 ⇒ T(n) = Θ(nlog 7)



Master theorem: ExamplesMaster theorem: Examples

E T( ) 4T( /2) ( )Ex. T(n) = 4T(n/2) + sqrt(n)
a = 4, b = 2 ⇒ nlogba = n2; f (n) = sqrt(n).
CASE 1: f (n) = O(n2 – ε) for ε = 1 5CASE 1: f (n) = O(n2 ε) for ε = 1.5.
∴ T(n) = Θ(n2).

Ex. T(n) = 4T(n/2) + n2

a = 4 b = 2 ⇒ nlogba = n2; f (n) = n2a 4, b  2 ⇒ n n ; f (n)  n .
CASE 2: f (n) = Θ(n2log0n), that is, k = 0.
∴ T(n) = Θ(n2log n).
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Master theorem: ExamplesMaster theorem: Examples
Ex. T(n) = 4T(n/2) + n3Ex. T(n)  4T(n/2) + n

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3.
CASE 3: f (n) = Ω(n2 + ε) for ε = 1f ( ) ( )
and 4(n/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
∴ T(n) = Θ(n3).

Ex. T(n) = 4T(n/2) + n2/logn
a = 4 b = 2 ⇒ nlogba = n2; f (n) = n2/logna = 4, b = 2 ⇒ n gb = n ; f (n) = n /logn.
Master method does not apply.  In particular, 
for every constant ε > 0, we have log n ∈ o(nε).
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for every constant ε  0, we have log n ∈ o(n ).



ConclusionConclusion

Di id d i j f l• Divide and conquer is just one of several 
powerful techniques for algorithm design. 

• Divide-and-conquer algorithms can be 
analyzed using recurrences and the master 

th dmethod .
• Can lead to more efficient algorithms
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