
CS 5633 – Fall 2012

Divide-and-Conquer
Carola Wenk

Slides courtesy of Charles Leiserson with small

1/24/12 CS 5633 Analysis of Algorithms 1

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

The divide-and-conquer
design paradigm

1. Divide the problem (instance) into
subproblems of sizes that are fractions of the p
original problem size.

2. Conquer the subproblems by solving them2. Conquer the subproblems by solving them
recursively.

3. Combine subproblem solutions3. Combine subproblem solutions.

1/24/12 CS 5633 Analysis of Algorithms 2

Binary searchBinary search

Fi d l t i t dFind an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3 Combine: Trivial

Example: Find 9

3. Combine: Trivial.

3 5 7 8 9 12 15

1/24/12 CS 5633 Analysis of Algorithms 3

Binary searchBinary search

Fi d l t i t dFind an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3 Combine: Trivial

Example: Find 9

3. Combine: Trivial.

3 5 7 8 9 12 15

1/24/12 CS 5633 Analysis of Algorithms 4

Binary searchBinary search

Fi d l t i t dFind an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3 Combine: Trivial

Example: Find 9

3. Combine: Trivial.

3 5 7 8 9 12 15

1/24/12 CS 5633 Analysis of Algorithms 5

Binary searchBinary search

Fi d l t i t dFind an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3 Combine: Trivial

Example: Find 9

3. Combine: Trivial.

3 5 7 8 9 12 15

1/24/12 CS 5633 Analysis of Algorithms 6

Binary searchBinary search

Fi d l t i t dFind an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3 Combine: Trivial

Example: Find 9

3. Combine: Trivial.

3 5 7 8 9 12 15

1/24/12 CS 5633 Analysis of Algorithms 7

Binary searchBinary search

Fi d l t i t dFind an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3 Combine: Trivial3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15

1/24/12 CS 5633 Analysis of Algorithms 8

Merge sortMerge sort
1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays of size n/2
3 Combine: Linear time key subroutine MERGE

MERGE-SORT (A[1 n])

3. Combine: Linear-time key subroutine MERGE

MERGE-SORT (A[1 . . n])
1. If n = 1, done.
2 MERGE-SORT (A[1 ⎡n/2⎤])2. MERGE-SORT (A[1 . . ⎡n/2⎤])
3. MERGE-SORT (A[⎡n/2⎤+1 . . n])
4 “Merge” the 2 sorted lists

1/24/12 CS 5633 Analysis of Algorithms 9

4. Merge the 2 sorted lists.

Merging two sorted arraysMerging two sorted arrays

20 12 20 12 20 12 20 12 20 12 20 1220

13

12

11

20

13

12

11

20

13

12

11

20

13

12

11

20

13

12

11

20

13

12

7

2

9

1

7

2

9 7 9 9

1 2 7 9 11 12

Time dn ∈ Θ(n) to merge a total
of n elements (linear time)

1/24/12 CS 5633 Analysis of Algorithms 10

of n elements (linear time).

Analyzing merge sortAnalyzing merge sort

MERGE-SORT (A[1 . . n])
1. If n = 1, done.

T(n)
d0

2. MERGE-SORT (A[1 . . ⎡n/2⎤])
3. MERGE-SORT (A[⎡n/2⎤+1 . . n])

T(n/2)
T(n/2)

4. “Merge” the 2 sorted lists.dn

Sloppiness: Should be T(⎡n/2⎤) + T(⎣n/2⎦) ,

1/24/12 CS 5633 Analysis of Algorithms 11

but it turns out not to matter asymptotically.

Recurrence for merge sortRecurrence for merge sort

d if n = 1;
T(n) =

d0 if n 1;
2T(n/2) + dn if n > 1.

• But what does T(n) solve to? I.e., is it
O(n) or O(n2) or O(n3) or …?

1/24/12 CS 5633 Analysis of Algorithms 12

() () ()

Recursion treeRecursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.Solve T(n) 2T(n/2) dn, where d 0 is constant.

T(n)

1/24/12 CS 5633 Analysis of Algorithms 13

Recursion treeRecursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.Solve T(n) 2T(n/2) dn, where d 0 is constant.

dn

T(n/2) T(n/2)

1/24/12 CS 5633 Analysis of Algorithms 14

Recursion treeRecursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.Solve T(n) 2T(n/2) dn, where d 0 is constant.

dn

T(/4) T(/4) T(/4) T(/4)

dn/2 dn/2

T(n/4) T(n/4) T(n/4) T(n/4)

1/24/12 CS 5633 Analysis of Algorithms 15

Recursion treeRecursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.Solve T(n) 2T(n/2) dn, where d 0 is constant.

dn dn

d /4 d /4 d /4 d /4

dn/2 dn/2

h = log n

dn

ddn/4 dn/4 dn/4 dn/4h = log n dn

…

d0

…

#leaves = n d0n

1/24/12 CS 5633 Analysis of Algorithms 16

Total dn log n + d0n

Mergesort ConclusionsMergesort Conclusions

M i Θ(l) i• Merge sort runs in Θ(n log n) time.
• Θ(n log n) grows more slowly than Θ(n2).
• Therefore, merge sort asymptotically beats

insertion sort in the worst case.
• In practice, merge sort beats insertion sort

for n > 30 or so. (Why not earlier?)(y)

1/24/12 CS 5633 Analysis of Algorithms 17

Recursion-tree methodRecursion-tree method

• A recursion tree models the costs (time) of a• A recursion tree models the costs (time) of a
recursive execution of an algorithm.

• The recursion tree method can be unreliable• The recursion-tree method can be unreliable,
just like any method that uses ellipses (…).

• It is good for generating guesses of what the• It is good for generating guesses of what the
runtime could be.

But: Need to verify that the guess is correct.
→ Induction (substitution method)

1/24/12 CS 5633 Analysis of Algorithms 18

()

Substitution methodSubstitution method
The most general method to solve a recurrenceThe most general method to solve a recurrence
(prove O and Ω separately):

1. Guess the form of the solution:
(e.g. using recursion trees, or expansion)

2. Verify by induction (inductive step).
3. Solve for O-constants n0 and c (base case of

induction)

1/24/12 CS 5633 Analysis of Algorithms 19

Powering a numberPowering a number

Problem: Compute a n where n ∈ NProblem: Compute a n, where n ∈ N.

Naive algorithm: Θ(n).

Divide-and-conquer algorithm: (recursive squaring)

a n =
a n/2 ⋅ a n/2 if n is even;
a (n–1)/2 ⋅ a (n–1)/2 ⋅ a if n is odd.

T(n) = T(n/2) + Θ(1) ⇒ T(n) = Θ(log n) .

1/24/12 CS 5633 Analysis of Algorithms 20

() () () () (g)

Matrix multiplicationMatrix multiplication

Input: A = [a] B = [b]Input: A = [aij], B = [bij].
Output: C = [cij] = A⋅ B. i, j = 1, 2,… , n.

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

⋅
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

=
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

n

n

n

n

n

n

bbb
bbb

aaa
aaa

ccc
ccc

L

L

L

L

L

L

22221

11211

22221

11211

22221

11211

⎥
⎥

⎦
⎢
⎢

⎣
⎥
⎥

⎦
⎢
⎢

⎣
⎥
⎥

⎦
⎢
⎢

⎣ nnnnnnnnnnnn bbbaaaccc L

MOMM

L

MOMM

L

MOMM

212121

∑ ⋅=
n

kjikij bac

1/24/12 CS 5633 Analysis of Algorithms 21

=k
jj

1

Standard algorithmStandard algorithm

for i ← 1 to nfor i ← 1 to n
do for j ← 1 to n

do c ← 0do cij ← 0
for k ← 1 to n

do c ← c + a bdo cij ← cij + aik⋅ bkj

Running time = Θ(n3)Running time Θ(n)

1/24/12 CS 5633 Analysis of Algorithms 22

Divide-and-conquer algorithmDivide-and-conquer algorithm
IDEA:
n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices:
IDEA:

⎤⎡⎤⎡⎤⎡ febasr
⎥⎦

⎤
⎢⎣

⎡⋅⎥⎦

⎤
⎢⎣

⎡=⎥⎦

⎤
⎢⎣

⎡
hg
fe

dc
ba

ut
sr

C = A ⋅ B
r = a·e+b·g
s = a·f+ b·h
t = c·e+d·g

8 recursive mults of (n/2)×(n/2) submatrices
4 adds of (n/2)×(n/2) submatrices

1/24/12 CS 5633 Analysis of Algorithms 23

u = c·f +d·h

Analysis of D&C algorithmAnalysis of D&C algorithm

T() 8 T(/2) + Θ(2)

b k ddi

T(n) = 8 T(n/2) + Θ(n2)

submatrices
submatrix size

work adding
submatrices

Solves to T(n) = Θ(n3) = Θ(nlog 8)

No better than the ordinary matrix
l i li i l i h

1/24/12 CS 5633 Analysis of Algorithms 24

multiplication algorithm.

Strassen’s ideaStrassen s idea
• Multiply 2×2 matrices with only 7 recursive mults. u t p y at ces w t o y 7 ecu s ve u ts.

P1 = a ⋅ (f – h)
P (+ b) h

r = P5 + P4 – P2 + P6
P + PP2 = (a + b) ⋅ h

P3 = (c + d) ⋅ e
P d ()

s = P1 + P2
t = P3 + P4

P + P P P

7 mults 18 adds/subs

P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P (b d) (+ h)

u = P5 + P1 – P3 – P7

7 mults, 18 adds/subs.
Note: No reliance on
commutativity of mult!

P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f)

1/24/12 CS 5633 Analysis of Algorithms 25

commutativity of mult!

Strassen’s ideaStrassen s idea
• Multiply 2×2 matrices with only 7 recursive mults. u t p y at ces w t o y 7 ecu s ve u ts.

P1 = a ⋅ (f – h)
P (+ b) h

r = P5 + P4 – P2 + P6
(+ d) (+ h)P2 = (a + b) ⋅ h

P3 = (c + d) ⋅ e
P d ()

= (a + d) (e + h)
+ d (g – e) – (a + b) h
+ (b d) (+ h)P4 = d ⋅ (g – e)

P5 = (a + d) ⋅ (e + h)
P (b d) (+ h)

+ (b – d) (g + h)
= ae + ah + de + dh

+ d d h bhP6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f)

+ dg –de – ah – bh
+ bg + bh – dg – dh

+ b
1/24/12 CS 5633 Analysis of Algorithms 26

= ae + bg

Strassen’s algorithmStrassen s algorithm
1. Divide: Partition A and B into

(n/2)×(n/2) submatrices. Form P-terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)×(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)×(n/2) submatrices.() ()

T(n) = 7 T(n/2) + Θ(n2)

1/24/12 CS 5633 Analysis of Algorithms 27

Analysis of StrassenAnalysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)T(n) 7 T(n/2) Θ(n)

Solves to T(n) = Θ(nlog 7)

The number 2.81 may not seem much smaller than
3, but because the difference is in the exponent, the 3, bu because e d e e ce s e e po e , e
impact on running time is significant. In fact,
Strassen’s algorithm beats the ordinary algorithm

B t t d t (f th ti l i t t l) Θ(2 376)

g y g
on today’s machines for n ≥ 30 or so.

1/24/12 CS 5633 Analysis of Algorithms 28

Best to date (of theoretical interest only): Θ(n2.376L).

The divide-and-conquer
design paradigm

1. Divide the problem (instance) into
subproblems of sizes that are fractions of the p
original problem size.

2. Conquer the subproblems by solving them2. Conquer the subproblems by solving them
recursively.

3. Combine subproblem solutions3. Combine subproblem solutions.

⇒ Runtime recurrences

1/24/12 CS 5633 Analysis of Algorithms 29

The master methodThe master method

The master method applies to recurrences of
the formthe form

T(n) = a T(n/b) + f (n) ,
where a ≥ 1, b > 1, and f is asymptotically
positive.

1/24/12 CS 5633 Analysis of Algorithms 30

Example: merge sortExample: merge sort
1. Divide: Trivial.
2. Conquer: Recursively sort a=2

subarrays of size n/2=n/by
3. Combine: Linear-time merge, runtime

f(n)∈O(n)f(n)∈O(n)

T(n) = 2 T(n/2) + O(n)
k di idi# subproblems subproblem size work dividing

and combining

1/24/12 CS 5633 Analysis of Algorithms 31

T(n) = a T(n/b) + f(n)

Master TheoremMaster Theorem
T(n) = a T(n/b) + f (n)

CASE 1:
f (n) = O(nlogba – ε) ⇒ T(n) = Θ(nlogba)

CASE 2:
f (n) = Θ(nlogba logkn) ⇒ T(n) = Θ(nlogba logk+1n)f (n) = Θ(n gb log n) ⇒ T(n) = Θ(n gb log n)

CASE 3:
f (n) = Ω(nlogba + ε)
and a f (n/b) ≤ c f (n) ⇒ T(n) = Θ(f (n))

1/24/12 CS 5633 Analysis of Algorithms 32

for some constant c < 1

How to apply the theoremHow to apply the theorem
Compare f (n) with nlogba:Compare f (n) with n :

1. f (n) = O(nlogba – ε) for some constant ε > 0.
• f (n) grows polynomially slower than nlogba

(by an nε factor).
Solution: T(n) = Θ(nlogba) .

2 f () Θ(logba l k) f t t k ≥ 02. f (n) = Θ(nlogba logkn) for some constant k ≥ 0.
• f (n) and nlogba grow at similar rates.

1/24/12 CS 5633 Analysis of Algorithms 33

Solution: T(n) = Θ(nlogba logk+1n) .

How to apply the theoremHow to apply the theorem
Compare f (n) with nlogba:

3. f (n) = Ω(nlogba + ε) for some constant ε > 0.

Compare f (n) with n :

f () ()
• f (n) grows polynomially faster than nlogba (by

an nε factor),),
and f (n) satisfies the regularity condition that
a f (n/b) ≤ c f (n) for some constant c < 1.a f (n/b) ≤ c f (n) for some constant c 1.
Solution: T(n) = Θ(f (n)) .

1/24/12 CS 5633 Analysis of Algorithms 34

Example: merge sortExample: merge sort

1 Divide: Trivial1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + O(n)T(n) = 2 T(n/2) + O(n)
subproblems subproblem size work dividing

and combiningand combining
nlogba = nlog22 = n1 = n ⇒ CASE 2 (k = 0)

⇒ T(n) = Θ(n log n) .

1/24/12 CS 5633 Analysis of Algorithms 35

⇒ T(n) Θ(n log n) .

Example: binary searchExample: binary search

T() 1 T(/2) + Θ(1)T(n) = 1 T(n/2) + Θ(1)

b bl k di idi# subproblems
subproblem size

work dividing
and combining

nlogba = nlog21 = n0 = 1 ⇒ CASE 2 (k = 0)nlogba = nlog21 = n0 = 1 ⇒ CASE 2 (k = 0)
⇒ T(n) = Θ(log n) .

1/24/12 CS 5633 Analysis of Algorithms 36

Matrix multiplication:
Divide-and-conquer algorithm

IDEA:
n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices:
IDEA:

⎤⎡⎤⎡⎤⎡ febasr
⎥⎦

⎤
⎢⎣

⎡⋅⎥⎦

⎤
⎢⎣

⎡=⎥⎦

⎤
⎢⎣

⎡
hg
fe

dc
ba

ut
sr

C = A ⋅ B
r = a·e+b·g
s = a·f+ b·h
t = c·e+d·g

8 recursive mults of (n/2)×(n/2) submatrices
4 adds of (n/2)×(n/2) submatrices

1/24/12 CS 5633 Analysis of Algorithms 37

u = c·f +d·h

Matrix multiplication:
Analysis of D&C algorithm

T() 8 T(/2) + Θ(2)

b k ddi

T(n) = 8 T(n/2) + Θ(n2)

submatrices
submatrix size

work adding
submatrices

nlogba = nlog28 = n3 ⇒ CASE 1 ⇒ T(n) = Θ(n3)

No better than the ordinary matrix
l i li i l i h

1/24/12 CS 5633 Analysis of Algorithms 38

multiplication algorithm.

Strassen’s algorithmStrassen s algorithm
1. Divide: Partition A and B into

(n/2)×(n/2) submatrices. Form P-terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)×(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)×(n/2) submatrices.() ()

T(n) = 7 T(n/2) + Θ(n2)

1/24/12 CS 5633 Analysis of Algorithms 39

nlogba = nlog27 ≈ n2.81 ⇒ CASE 1 ⇒ T(n) = Θ(nlog 7)

Master theorem: ExamplesMaster theorem: Examples

E T() 4T(/2) ()Ex. T(n) = 4T(n/2) + sqrt(n)
a = 4, b = 2 ⇒ nlogba = n2; f (n) = sqrt(n).
CASE 1: f (n) = O(n2 – ε) for ε = 1 5CASE 1: f (n) = O(n2 ε) for ε = 1.5.
∴ T(n) = Θ(n2).

Ex. T(n) = 4T(n/2) + n2

a = 4 b = 2 ⇒ nlogba = n2; f (n) = n2a 4, b 2 ⇒ n n ; f (n) n .
CASE 2: f (n) = Θ(n2log0n), that is, k = 0.
∴ T(n) = Θ(n2log n).

1/24/12 CS 5633 Analysis of Algorithms 40

() (g)

Master theorem: ExamplesMaster theorem: Examples
Ex. T(n) = 4T(n/2) + n3Ex. T(n) 4T(n/2) + n

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3.
CASE 3: f (n) = Ω(n2 + ε) for ε = 1f () ()
and 4(n/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
∴ T(n) = Θ(n3).

Ex. T(n) = 4T(n/2) + n2/logn
a = 4 b = 2 ⇒ nlogba = n2; f (n) = n2/logna = 4, b = 2 ⇒ n gb = n ; f (n) = n /logn.
Master method does not apply. In particular,
for every constant ε > 0, we have log n ∈ o(nε).

1/24/12 CS 5633 Analysis of Algorithms 41

for every constant ε 0, we have log n ∈ o(n).

ConclusionConclusion

Di id d i j f l• Divide and conquer is just one of several
powerful techniques for algorithm design.

• Divide-and-conquer algorithms can be
analyzed using recurrences and the master

th dmethod .
• Can lead to more efficient algorithms

9/20/11 CS 3343 Analysis of Algorithms 42

