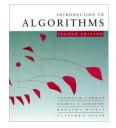


Divide-and-Conquer

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

1/24/12



The divide-and-conquer design paradigm

- **1.** *Divide* the problem (instance) into subproblems of sizes that are fractions of the original problem size.
- 2. *Conquer* the subproblems by solving them recursively.
- 3. *Combine* subproblem solutions.

Find an element in a sorted array: *1. Divide:* Check middle element. *2. Conquer:* Recursively search 1 subarray. *3. Combine:* Trivial.

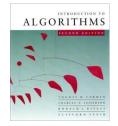
Example: Find 9

Find an element in a sorted array: *1. Divide:* Check middle element. *2. Conquer:* Recursively search 1 subarray. *3. Combine:* Trivial.

Example: Find 9

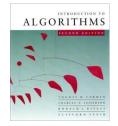
Find an element in a sorted array: *1. Divide:* Check middle element. *2. Conquer:* Recursively search 1 subarray. *3. Combine:* Trivial.

Example: Find 9



Find an element in a sorted array: *1. Divide:* Check middle element. *2. Conquer:* Recursively search 1 subarray. *3. Combine:* Trivial.

Example: Find 9

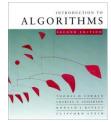


Find an element in a sorted array: *1. Divide:* Check middle element. *2. Conquer:* Recursively search 1 subarray. *3. Combine:* Trivial.

Example: Find 9

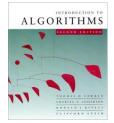
Find an element in a sorted array: *1. Divide:* Check middle element. *2. Conquer:* Recursively search 1 subarray. *3. Combine:* Trivial.

Example: Find 9

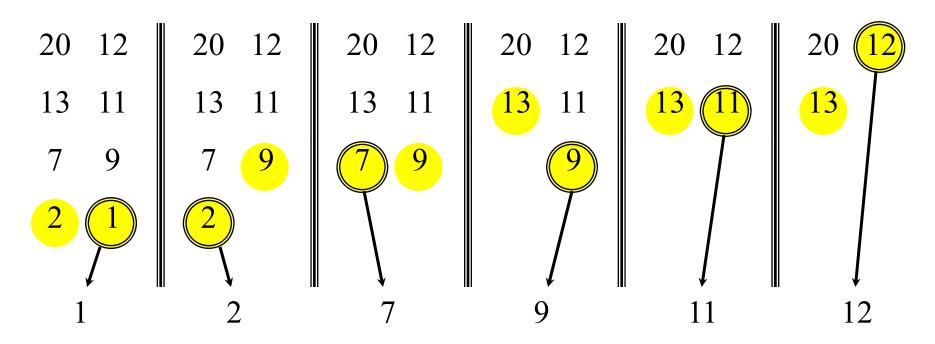


Merge sort

- **1.** *Divide:* Trivial.
- **2.** Conquer: Recursively sort 2 subarrays of size n/2
- 3. *Combine:* Linear-time key subroutine MERGE
 - **MERGE-SORT** $(A[1 \dots n])$
 - 1. If n = 1, done.
 - 2. Merge-Sort (A[1 . . $\lceil n/2 \rceil$])
 - **3.** Merge-Sort ($A[\lceil n/2 \rceil + 1 . . n]$)
 - 4. *"Merge"* the 2 sorted lists.



Merging two sorted arrays



Time $dn \in \Theta(n)$ to merge a total of *n* elements (linear time).



Analyzing merge sort

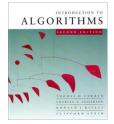
T(n) d_0 T(n/2) T(n/2) dn

MERGE-SORT (A[1 . . n])1. If n = 1, done. 2. MERGE-SORT $(A[1 . . \lceil n/2 \rceil])$

3. MERGE-SORT
$$(A[\lceil n/2 \rceil + 1 ... n])$$

4. "*Merge*" the 2 sorted lists.

Sloppiness: Should be $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$, but it turns out not to matter asymptotically.

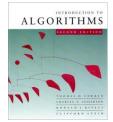


Recurrence for merge sort

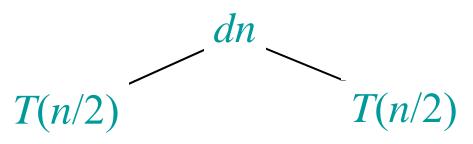
$$T(n) = \begin{cases} d_0 \text{ if } n = 1;\\ 2T(n/2) + dn \text{ if } n > 1. \end{cases}$$

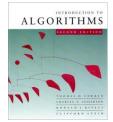
• But what does T(n) solve to? I.e., is it O(n) or $O(n^2)$ or $O(n^3)$ or ...?

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant. T(n)

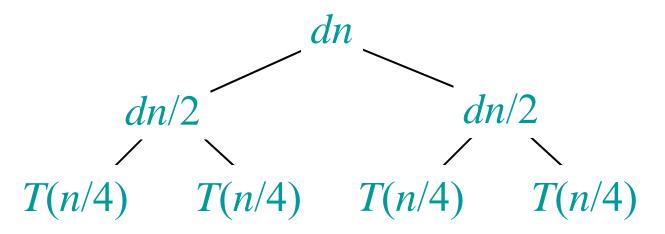


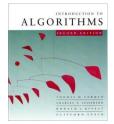
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.



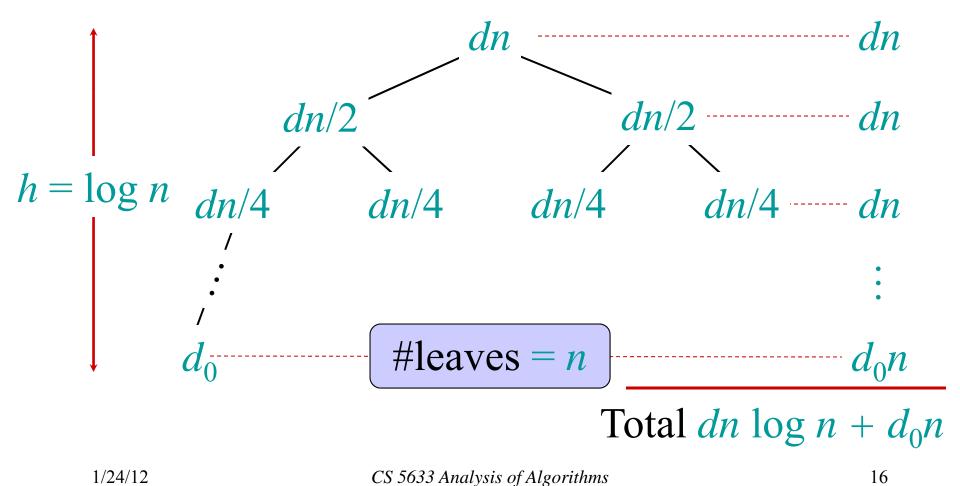


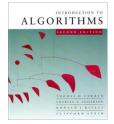
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.





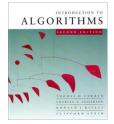
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.





Mergesort Conclusions

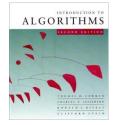
- Merge sort runs in $\Theta(n \log n)$ time.
- $\Theta(n \log n)$ grows more slowly than $\Theta(n^2)$.
- Therefore, merge sort asymptotically beats insertion sort in the worst case.
- In practice, merge sort beats insertion sort for n > 30 or so. (Why not earlier?)



Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- It is good for generating **guesses** of what the runtime could be.

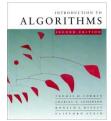
But: Need to **verify** that the guess is correct. \rightarrow Induction (substitution method)



Substitution method

The most general method to solve a recurrence (prove O and Ω separately):

Guess the form of the solution: (e.g. using recursion trees, or expansion)
 Verify by induction (inductive step).
 Solve for O-constants n₀ and c (base case of induction)



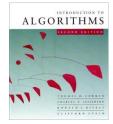
Powering a number

Problem: Compute a^n , where $n \in \mathbb{N}$. Naive algorithm: $\Theta(n)$.

Divide-and-conquer algorithm: (recursive squaring)

$$a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even;} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd.} \end{cases}$$

 $T(n) = T(n/2) + \Theta(1) \implies T(n) = \Theta(\log n)$.

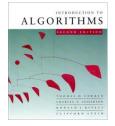


Matrix multiplication

Input: $A = [a_{ij}], B = [b_{ij}].$ **Output:** $C = [c_{ij}] = A \cdot B.$ i, j = 1, 2, ..., n.

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

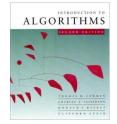
$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$



Standard algorithm

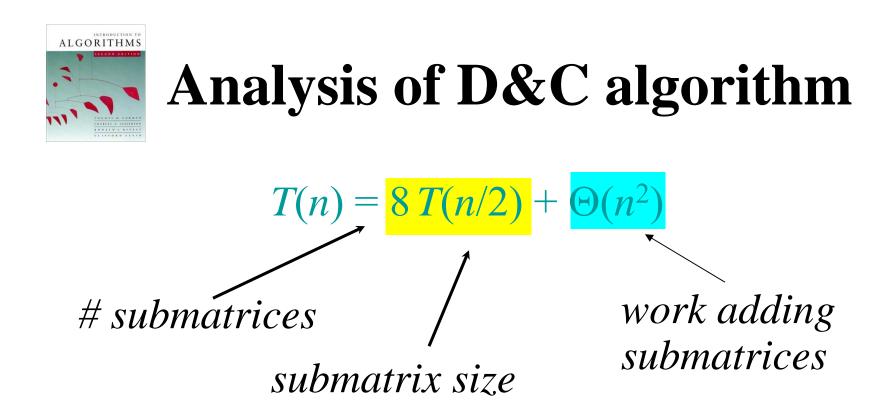
for $i \leftarrow 1$ to ndo for $j \leftarrow 1$ to ndo $c_{ij} \leftarrow 0$ for $k \leftarrow 1$ to ndo $c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}$

Running time = $\Theta(n^3)$



Divide-and-conquer algorithm

IDEA: $n \times n$ matrix = 2×2 matrix of $(n/2) \times (n/2)$ submatrices: $\begin{vmatrix} r & s \\ t & \mu \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \cdot \begin{vmatrix} e & f \\ \hline g & h \end{vmatrix}$ $C = A \cdot B$ $r = a \cdot e + b \cdot g$ $s = a \cdot f + b \cdot h$ $t = c \cdot e + d \cdot g$ $u = c \cdot f + d \cdot h$ 8 recursive mults of $(n/2) \times (n/2)$ submatrices 4 adds of $(n/2) \times (n/2)$ submatrices



Solves to $T(n) = \Theta(n^3) = \Theta(n^{\log 8})$

No better than the ordinary matrix multiplication algorithm.

Strassen's idea

• Multiply 2×2 matrices with only 7 recursive mults.

$$P_{1} = a \cdot (f - h)$$

$$P_{2} = (a + b) \cdot h$$

$$P_{3} = (c + d) \cdot e$$

$$P_{4} = d \cdot (g - e)$$

$$P_{5} = (a + d) \cdot (e + h)$$

$$P_{6} = (b - d) \cdot (g + h)$$

$$P_{7} = (a - c) \cdot (e + f)$$

$$r = P_{5} + P_{4} - P_{2} + P_{6}$$

$$s = P_{1} + P_{2}$$

$$t = P_{3} + P_{4}$$

$$u = P_{5} + P_{1} - P_{3} - P_{7}$$

7 mults, 18 adds/subs. **Note:** No reliance on commutativity of mult!

Strassen's idea

• Multiply 2×2 matrices with only 7 recursive mults.

$$P_{1} = a \cdot (f - h)$$

$$P_{2} = (a + b) \cdot h$$

$$P_{3} = (c + d) \cdot e$$

$$P_{4} = d \cdot (g - e)$$

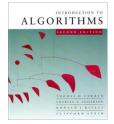
$$P_{5} = (a + d) \cdot (e + h)$$

$$P_{6} = (b - d) \cdot (g + h)$$

$$P_{7} = (a - c) \cdot (e + f)$$

$$r = P_{5} + P_{4} - P_{2} + P_{6}$$

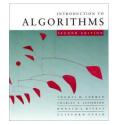
= $(a + d)(e + h)$
+ $d(g - e) - (a + b)h$
+ $(b - d)(g + h)$
= $ae + ah + de + dh$
+ $dg - de - ah - bh$
+ $bg + bh - dg - dh$
= $ae + bg$



Strassen's algorithm

- **1.** *Divide:* Partition *A* and *B* into $(n/2) \times (n/2)$ submatrices. Form *P*-terms to be multiplied using + and -.
- 2. Conquer: Perform 7 multiplications of $(n/2) \times (n/2)$ submatrices recursively.
- 3. Combine: Form C using + and on $(n/2) \times (n/2)$ submatrices.

$$T(n) = 7 T(n/2) + \Theta(n^2)$$

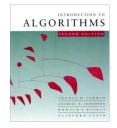


Analysis of Strassen

 $T(n) = 7 T(n/2) + \Theta(n^2)$ Solves to $T(n) = \Theta(n^{\log 7})$

The number 2.81 may not seem much smaller than 3, but because the difference is in the exponent, the impact on running time is significant. In fact, Strassen's algorithm beats the ordinary algorithm on today's machines for $n \ge 30$ or so.

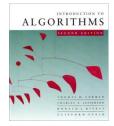
Best to date (of theoretical interest only): $\Theta(n^{2.376\cdots})$.



The divide-and-conquer design paradigm

- **1.** *Divide* the problem (instance) into subproblems of sizes that are fractions of the original problem size.
- 2. *Conquer* the subproblems by solving them recursively.
- 3. *Combine* subproblem solutions.

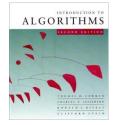
\Rightarrow Runtime recurrences



The master method

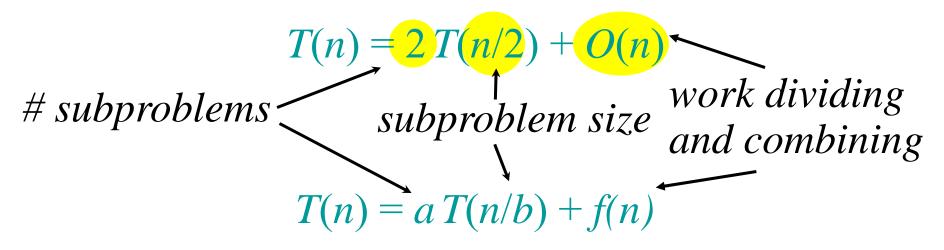
The master method applies to recurrences of the form

T(n) = a T(n/b) + f(n),where $a \ge 1, b > 1$, and f is asymptotically positive.



Example: merge sort

- 1. Divide: Trivial.
- 2. Conquer: Recursively sort a=2 subarrays of size n/2=n/b
- 3. *Combine:* Linear-time merge, runtime $f(n) \in O(n)$





CASE 1:

Master Theorem

T(n) = a T(n/b) + f(n)

 $f(n) \stackrel{\leq}{=} O(n^{\log_{ba}} \stackrel{\swarrow}{\not \xi})$ $\Rightarrow T(n) = \Theta(n^{\log_b a})$ **CASE 2**: $f(n) \equiv \Theta(n^{\log_b a} \log^k n)$ \Rightarrow $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$ **CASE 3**: $f(n) \stackrel{\checkmark}{=} \Omega(n^{\log_b a})$ and $af(n/b) \le cf(n)$ \Rightarrow $T(n) = \Theta(f(n))$ for some constant c < 1

1/24/12

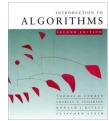
How to apply the theorem

Compare f(n) with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$.

• f(n) grows polynomially slower than $n^{\log_b a}$ (by an n^{ε} factor). Solution: $T(n) = \Theta(n^{\log_b a})$.

2. f(n) = Θ(n^{logba} log^kn) for some constant k ≥ 0.
f(n) and n^{logba} grow at similar rates.
Solution: T(n) = Θ(n^{logba} log^{k+1}n).

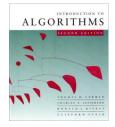


How to apply the theorem

Compare f(n) with $n^{\log_b a}$:

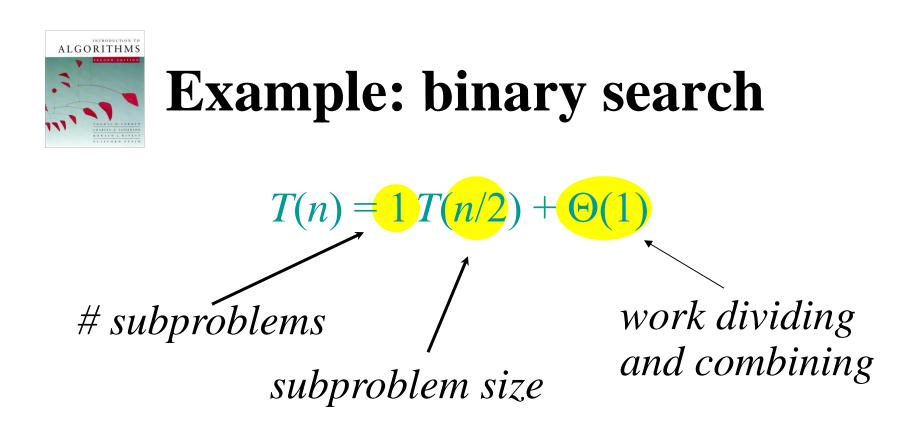
- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ε} factor),

and f(n) satisfies the *regularity condition* that $af(n/b) \le cf(n)$ for some constant c < 1. Solution: $T(n) = \Theta(f(n))$.

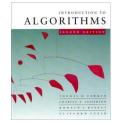


Example: merge sort

1. *Divide:* Trivial. 2. *Conquer:* Recursively sort 2 subarrays. **3.** *Combine*: Linear-time merge. T(n) = 2T(n/2) + O(n)# subproblems subproblem size work dividing and combining and combining $n^{\log_b a} = n^{\log_2 2} = n^1 = n \implies \text{CASE 2} (k = 0)$ \Rightarrow $T(n) = \Theta(n \log n)$.



$$n^{\log_b a} = n^{\log_2 1} = n^0 = 1 \implies \text{CASE 2} (k = 0)$$
$$\implies T(n) = \Theta(\log n) .$$

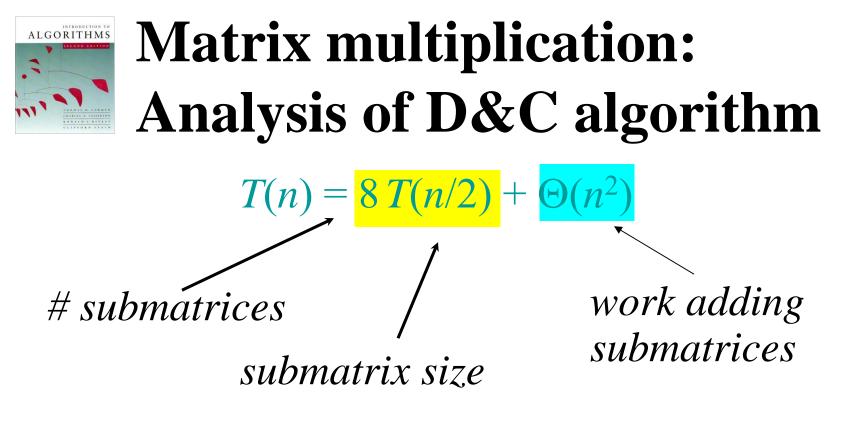


Matrix multiplication: Divide-and-conquer algorithm

IDEA: $n \times n$ matrix = 2×2 matrix of $(n/2) \times (n/2)$ submatrices:

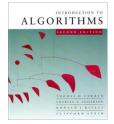
$$\begin{bmatrix} r & s \\ -+- \\ t & u \end{bmatrix} = \begin{bmatrix} a & b \\ -+- \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ --- \\ g & h \end{bmatrix}$$
$$C = A \cdot B$$

 $r = a \cdot e + b \cdot g$ $s = a \cdot f + b \cdot h$ $t = c \cdot e + d \cdot g$ $u = c \cdot f + d \cdot h$ 8 recursive mults of $(n/2) \times (n/2)$ submatrices 4 adds of $(n/2) \times (n/2)$ submatrices



 $n^{\log_b a} = n^{\log_2 8} = n^3 \implies \mathbf{CASE} \ 1 \implies T(n) = \Theta(n^3)$

No better than the ordinary matrix multiplication algorithm.



Strassen's algorithm

- **1.** *Divide:* Partition *A* and *B* into $(n/2) \times (n/2)$ submatrices. Form *P*-terms to be multiplied using + and -.
- 2. Conquer: Perform 7 multiplications of $(n/2) \times (n/2)$ submatrices recursively.
- 3. Combine: Form C using + and on $(n/2) \times (n/2)$ submatrices.

 $T(n) = 7 T(n/2) + \Theta(n^2)$

 $n^{\log_b a} = n^{\log_2 7} \approx n^{2.81} \implies \mathbf{CASE 1} \implies T(n) = \Theta(n^{\log 7})$



Master theorem: Examples

Ex.
$$T(n) = 4T(n/2) + \operatorname{sqrt}(n)$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = \operatorname{sqrt}(n).$
CASE 1: $f(n) = O(n^{2-\varepsilon})$ for $\varepsilon = 1.5$.
 $\therefore T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log b^a} = n^2; f(n) = n^2.$
CASE 2: $f(n) = \Theta(n^2 \log^0 n)$, that is, $k = 0$.
 $\therefore T(n) = \Theta(n^2 \log n).$

Master theorem: Examples

Ex.
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$
CASE 3: $f(n) = \Omega(n^{2+\varepsilon})$ for $\varepsilon = 1$
and $4(n/2)^3 \le cn^3$ (reg. cond.) for $c = 1/2$.
 $\therefore T(n) = \Theta(n^3).$

Ex.
$$T(n) = 4T(n/2) + n^2/\log n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\log n.$
Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $\log n \in o(n^{\varepsilon})$.

- Divide and conquer is just one of several powerful techniques for algorithm design.
- Divide-and-conquer algorithms can be analyzed using recurrences and the master method .
- Can lead to more efficient algorithms