3/27/12

Schedule (subject to change)

DateMaterialTu 1/17Analyzing algorithms (Ch. 2Best case and worst case runtim	,
Best case and worst case runtim	,
	es; insertion sort, incremental algorithm
Th $1/19$ Asymptotic notation (Ch. 3)	
$O, \Omega, \Theta, o, $ limit-theorem; runtin	,
Homework 1 assigned	
	and recurrences (Ch. 4.1, 4.2)
	binary search; Runtime recurrences. Solving recur-
rences with recursion tree and w	ith the substitution method (induction)
Th $1/26$ Master theorem (Ch. 4.3), m	ore divide-and-conquer (Ch. 31.6 pages 879–
880; Ch. 30 pages 822–824; 2	28.2)
Use of master theorem to solve a	recurrences. Repeated squaring for exponentiation,
Fibonacci numbers, polynomial	multiplication, Strassen's matrix multiplication.
Homework 1 due; homework 2 a	
	n. $5.1-5.3$), random variables and expected
values (Ch. C.3)	
	ne analysis. Random variables, expected value.
Th 2/2 Quicksort (Ch. 7.1–7.4)	
-	ase runtimes, randomized quicksort.
Homework 2 due; homework 3 a	ssigned
Tu 2/7 Sorting (Ch. 8.1, 8.2, 8.3)	
	ound for comparison sorts, counting sort, radix sort
Th 2/9 Order statistics (Ch. 9)	agt alament). Dandamigad selection deterministic
selection in linear time	est element); Randomized selection, deterministic
Homework 3 due; homework 4 a	esioned
Tu 2/14 Red-black trees (Ch. 13.1, 1	
	ns, insertion; abstract data types, ADT dictionary
The 2/16 B-trees (Ch. 18.1, 18.2)	
k-ary search trees, B-tree def., h	eight, insertion
Tu 2/21 Augmenting Data Structure	
,	namic order statistics, interval trees
Homework 4 due; homework 5 a	
Th 2/23 Test 1	
Material from $1/17$ until $2/9$ (in	clusive)
Tu 2/28 Range Trees (+)	,
	l in d dimensions; preprocessing time, query time.
Th 3/1 Dynamic programming (Ch.	
	LCS: fill table, then construct solution from the
table.	
Homework 5 due; homework 6 a	ssigned
Tu 3/6 Dynamic programming (Ch.	-
	eral outline of dynamic programming: Optimal sub-
	ng subproblems, fill table bottom-up or by memo-
ization.	

Date	Material	
Th 3/8	Greedy algorithms (Ch. 16.2, problem 16-1 on page 402; Ch. 16.3)	
	Greedy algorithms (greedy-choice property, optimal substructure). Making change,	
	fractional knapsack. Huffman codes	
	Homework 6 due; homework 7 assigned	
Tu 3/13	SPRING BREAK	
Th 3/15	SPRING BREAK	
Tu 3/20	Amortized analysis (Ch. 17.1, 17.2, 17.4)	
	Aggregate analysis (total runtime of n operations), accounting method (prepay for	
	later operations); binary counter, dynamic tables	
Th 3/22	Union-Find (Ch. 21.1, 21.2, 21.3)	
	Operations, list implementation, tree implementation, union-by-weight / union-by	
	rank, path compression. Ackermann function, and inverse Ackermann function α .	
	Homework 7 due; homework 8 assigned	
Mo 3/26	Drop deadline to drop with a 'W'	
Tu 3/27	Elementary Graph Algorithms (Ch. 22.1–22.4)	
	Representations of graphs, breadth-first search (BFS), depth-first search (DFS),	
	topological sort	
Th 3/29	Minimum Spanning Trees (Ch. 23)	
	Prim (grows single tree), Kruskal (grows forest; uses union/find data structure)	
	Homework 8 due; homework 9 assigned	
Tu 4/3	Single-source shortest paths (Ch. 24 without 24.4)	
	Optimal substructure, triangle inequality, relaxation step; Dijkstra (only for non-	
	negative edge weights), predecessor tree (shortest path tree); Bellman-Ford, detec-	
	tion of negative-weight cycles; Shortest paths in a DAG	
Th $4/5$	All-Pairs Shortest Paths (Ch. 25.2)	
	Dynamic programming: Floyd-Warshall	
$T_{\rm v} 4/10$	Homework 9 due; homework 10 assigned	
Tu 4/10	P and NP (Ch. 34) Decision problems, definition of classes P and NP, polynomial-time reductions	
Th 4/12	Test 2 $(14 + 1) (22 + 1) (22 + 1)$	
	Material from 2/14 until 3/22 (inclusive)	
Tu 4/17	P and NP (Ch. 34)	
	NP-hardness, NP-completeness; Show that problems are NP-complete by reducing	
	from other problems; TSP, Clique, Independent Set, Vertex Cover, Hamilton Path,	
	Hamilton Circuit	
Th 4/19	Approximation Algorithms (Ch. 35.1 and 35.2)	
	Constant factor approximation; Vertex cover; MST for Euclidean TSP	
Tu 4/94	Homework 10 due; homework 11 assigned	
Tu 4/24	Maximum Flow (Ch. 26)	
Th 4/96	Flow networks; Max-flow min-cut, augmenting path, residual network	
Th $4/26$	Maximum Flow (Ch. 26)	
	Ford-Fulkerson, Edmonds-Karp	
 Τυ 5/1	Homework 11 due Final Review	
Tu 5/1		
	Review for the final exam	

Chapter numbers refer to the CLRS book. "+" indicates additional material.

The comprehensive final exam will be on Tuesday May 8th, $8\mathrm{pm}$ – 10:30pm in the classroom.