1/17/12

Schedule (subject to change)

D. /	M . 1
Date	Material
Tu 1/17	Analyzing algorithms (Ch. 2.2)
TD1 1/10	Best case and worst case runtimes; insertion sort, incremental algorithm
Th 1/19	Asymptotic notation (Ch. 3, Ch. A)
	$O, \Omega, \Theta, o, \text{ limit-theorem; runtime for code-snippets}$
TD 1/04	Homework 1 assigned
Tu 1/24	Divide-and-conquer (Ch. 2.3) and recurrences (Ch. 4.1, 4.2)
	Divide-and-conquer, merge sort, binary search; Runtime recurrences. Solving recur-
TPL 1/96	rences with recursion tree and with the substitution method (induction)
Th 1/26	Master theorem (Ch. 4.3), more divide-and-conquer (Ch. 31.6 pages 879–
	880; Ch. 30 pages 822–824; 28.2)
	Use of master theorem to solve recurrences. Repeated squaring for exponentiation,
	Fibonacci numbers, polynomial multiplication, Strassen's matrix multiplication.
Tu 1/31	Homework 1 due; homework 2 assigned Randomized algorithms (Ch. 5.1–5.3), random variables and expected
14 1/31	values (Ch. C.3)
	Hiring problem; Expected runtime analysis. Random variables, expected value.
Th 2/2	Quicksort (Ch. 7.1–7.4)
111 2/2	Quicksort, best-case and worst-case runtimes, randomized quicksort.
	Homework 2 due; homework 3 assigned
Tu 2/7	Sorting (Ch. 8.1, 8.2, 8.3)
14 2/ .	Decision trees, lower $\Omega(n \log n)$ bound for comparison sorts, counting sort, radix sort
Th 2/9	Order statistics (Ch. 9)
,	Order statistics (find <i>i</i> -th smallest element); Randomized selection, deterministic
	selection in linear time
	Homework 3 due; homework 4 assigned
Tu 2/14	Red-black trees (Ch. 13.1, 13.2, 13.3)
	Red-black tree property, rotations, insertion; abstract data types, ADT dictionary
Th 2/16	B-trees (Ch. 18.1, 18.2)
	k-ary search trees, B-tree def., height, insertion
	Homework 4 due; homework 5 assigned
Tu 2/21	Augmenting Data Structures (Ch. 14, +)
	Augmenting red-black trees; Dynamic order statistics, interval trees
Th 2/23	Test 1
	Material from 1/17 until 2/9 (inclusive)
Tu 2/28	Range Trees (+)
,	Range trees, in 2 dimensions and in d dimensions; preprocessing time, query time.
Th 3/1	Dynamic programming (Ch. 15.2, 15.3, 15.4)
	Fibonacci, binomial coefficient, LCS: fill table, then construct solution from the
	table.
	Homework 5 due; homework 6 assigned
Tu 3/6	Dynamic programming (Ch. 15.2, 15.3, 15.4)
	Matrix chain multiplication; general outline of dynamic programming: Optimal sub-
	structure (recurrence), overlapping subproblems, fill table bottom-up or by memo-
	ization.

Date	Material
Th 3/8	Greedy algorithms (Ch. 16.2, problem 16-1 on page 402; Ch. 16.3)
,	Greedy algorithms (greedy-choice property, optimal substructure). Making change,
	fractional knapsack. Huffman codes
	Homework 6 due; homework 7 assigned
Tu 3/13	SPRING BREAK
Th 3/15	SPRING BREAK
Tu 3/20	Amortized analysis (Ch. 17.1, 17.2, 17.4)
	Aggregate analysis (total runtime of n operations), accounting method (prepay for
	later operations); binary counter, dynamic tables
Th $3/22$	Union-Find (Ch. 21.1, 21.2, 21.3)
	Operations, list implementation, tree implementation, union-by-weight / union-by
	rank, path compression. Ackermann function, and inverse Ackermann function α .
	Homework 7 due; homework 8 assigned
Mo 3/26	Drop deadline to drop with a 'W'
$Tu \ 3/27$	Elementary Graph Algorithms (Ch. 22.1–22.4)
	Representations of graphs, breadth-first search (BFS), depth-first search (DFS),
	topological sort
Th $3/29$	Minimum Spanning Trees (Ch. 23)
	Prim (grows single tree), Kruskal (grows forest; uses union/find data structure)
	Homework 8 due; homework 9 assigned
Tu 4/3	Single-source shortest paths (Ch. 24 without 24.4)
	Optimal substructure, triangle inequality, relaxation step; Dijkstra (only for non-
	negative edge weights), predecessor tree (shortest path tree); Bellman-Ford, detec-
	tion of negative-weight cycles; Shortest paths in a DAG
Th $4/5$	Test 2
	Material from 2/14 until 3/22 (inclusive)
Tu 4/10	All-Pairs Shortest Paths (Ch. 25.2)
	Dynamic programming: Floyd-Warshall
Th $4/12$	P and NP (Ch. 34)
	Decision problems, definition of classes P and NP, polynomial-time reductions
	Homework 9 due; homework 10 assigned
Tu 4/17	P and NP (Ch. 34)
	NP-hardness, NP-completeness; Show that problems are NP-complete by reducing
	from other problems; TSP, Clique, Independent Set, Vertex Cover, Hamilton Path,
TDI 4/10	Hamilton Circuit
Th $4/19$	Approximation Algorithms (Ch. 35.1 and 35.2)
	Constant factor approximation; Vertex cover; MST for Euclidean TSP
The 4/04	Homework 10 due; homework 11 assigned
Tu 4/24	Maximum Flow (Ch. 26)
Th 4/96	Flow networks; Max-flow min-cut, augmenting path, residual network
Th $4/26$	Maximum Flow (Ch. 26) Ford Fullrarean Edmands Karr
	Ford-Fulkerson, Edmonds-Karp
Th. E /1	Homework 11 due
Tu 5/1	Final Review Province for the final even
	Review for the final exam

Chapter numbers refer to the CLRS book. "+" indicates additional material.

The comprehensive final exam will be on Tuesday May 8th, $8\mathrm{pm}-10\text{:}30\mathrm{pm}$ in the classroom.