
CS 5633 Analysis of Algorithms – Spring 12

3/8/12

7. Homework
Due 3/22/12 before class

1. Matrix Chain Multiplication

(a) The dynamic programming approach for the matrix chain multiplication problem makes
many recursive calls by trying out all possible k with i ≤ k ≤ j in order to split Aij =
AiAi+1, . . . , Aj . Now, consider the greedy approach which selects the k that simply
minimizes the quantity pi−1pkpj , and then simply recursive for this one choice of k
only. Give a counter-example which shows that this greedy approach yields a suboptimal
solution.

(b) Show how to perform the traceback in order to construct an optimal parenthesization for
the matrix chain multiplication problem without using the auxiliary s-table. How much
time does this traceback algorithm need? Justify your answer.

2. Restaurants

Let x1, x2, . . . , xn be n locations on a line (in sorted order). These represent possible positions
for opening a restaurant on a given street. Additionally, for each position xi you are given a
value pi which represents the profit of opening a restaurant at location xi. You are also given
a number k > 0.

The task is to develop a dynamic programming algorithm to determine a set of locations to
open restaurants such that 1) every two restaurants are at least distance k apart, and 2) the
total profit is maximized.

You should first identify suitable subproblems and come up with a recursive formulation of the
problem. (E.g., h(i) = maximum total profit for opening restaurants at locations x1, . . . , xi).
Then shortly describe a dynamic programming algorithm and the proper traceback procedure.
What is the runtime of your algorithm?

3. Christmas (This question was on a PhD qualifying exam.)
For Christmas, I only had so much money to spend on gifts for n people, and I did not
allocate my resources very well. Now, I want to be ready for next Christmas. Naturally, I
want a dynamic programming solution for my problem.

For each person, I can choose either a good, expensive gift or a bad, cheap gift. I want to
maximize the happiness of the people I am giving the gifts to. I have four arrays of size n
containing positive integers between 1 and n: Cgood, Cbad, Hgood, Hbad.

• Cgood[i] indicates the cost of a good gift for person i.

• Cbad[i] indicates the cost of a bad gift for person i.

• Hgood[i] indicates the happiness of person i getting a good gift.

• Hbad[i] indicates the happiness of person i getting a bad gift.

You can assume Cgood[i] > Cbad[i] and Hgood[i] > Hbad[i]. I want to maximize the
sum of the happiness over all n people, but I only have a total of C money to spend.

Flip over to back page =⇒



(a) Suppose the following are the arrays for n = 4 and C = 10:

Cgood: [2, 3, 4, 3]

Cbad: [1, 2, 2, 2]

Hgood: [4, 3, 3, 4]

Hbad: [2, 2, 2, 2]

What gift selection maximizes happiness while not exceeding cost? What is the solution
for C = 9?

(b) Let h(i, c) be the maximum happiness for the first i people with a cost equal or less than
c. For example, h(2, 4) = 6 in the previous example by choosing a good gift for person 1
(cost 2, happiness 4) and a bad gift for person 2 (cost 2, happiness 2). Provide a recursive
definition for h(i, c). That is, show how to calculate h for i people from the values for
i− 1 people.

(c) Write a dynamic programing algorithm to compute h. What are the asymptotic running
time and asymptotic space requirements for your algorithm? Explain your answer.


