CS 5633 Analysis of Algorithms - Spring 12

7. Homework
 Due 3/22/12 before class

1. Matrix Chain Multiplication

(a) The dynamic programming approach for the matrix chain multiplication problem makes many recursive calls by trying out all possible k with $i \leq k \leq j$ in order to split $A_{i j}=$ $A_{i} A_{i+1}, \ldots, A_{j}$. Now, consider the greedy approach which selects the k that simply minimizes the quantity $p_{i-1} p_{k} p_{j}$, and then simply recursive for this one choice of k only. Give a counter-example which shows that this greedy approach yields a suboptimal solution.
(b) Show how to perform the traceback in order to construct an optimal parenthesization for the matrix chain multiplication problem without using the auxiliary s-table. How much time does this traceback algorithm need? Justify your answer.

2. Restaurants

Let $x_{1}, x_{2}, \ldots, x_{n}$ be n locations on a line (in sorted order). These represent possible positions for opening a restaurant on a given street. Additionally, for each position x_{i} you are given a value p_{i} which represents the profit of opening a restaurant at location x_{i}. You are also given a number $k>0$.

The task is to develop a dynamic programming algorithm to determine a set of locations to open restaurants such that 1) every two restaurants are at least distance k apart, and 2) the total profit is maximized.
You should first identify suitable subproblems and come up with a recursive formulation of the problem. (E.g., $h(i)=$ maximum total profit for opening restaurants at locations x_{1}, \ldots, x_{i}). Then shortly describe a dynamic programming algorithm and the proper traceback procedure. What is the runtime of your algorithm?
3. Christmas (This question was on a PhD qualifying exam.)

For Christmas, I only had so much money to spend on gifts for n people, and I did not allocate my resources very well. Now, I want to be ready for next Christmas. Naturally, I want a dynamic programming solution for my problem.

For each person, I can choose either a good, expensive gift or a bad, cheap gift. I want to maximize the happiness of the people I am giving the gifts to. I have four arrays of size n containing positive integers between 1 and n : Cgood, Cbad, Hgood, Hbad.

- Cgood[i] indicates the cost of a good gift for person i.
- Cbad[i] indicates the cost of a bad gift for person i.
- Hgood[i] indicates the happiness of person i getting a good gift.
- Hbad [i] indicates the happiness of person i getting a bad gift.

You can assume Cgood[i] > Cbad[i] and Hgood[i] > Hbad[i]. I want to maximize the sum of the happiness over all n people, but I only have a total of C money to spend.

$$
\text { FLIP OVER TO BACK PAGE } \Longrightarrow
$$

(a) Suppose the following are the arrays for $n=4$ and $C=10$:

Cgood: [2, 3, 4, 3]
Cbad: [1, 2, 2, 2]
Hgood: [4, 3, 3, 4]
Hbad: [2, 2, 2, 2]
What gift selection maximizes happiness while not exceeding cost? What is the solution for $C=9$?
(b) Let $h(i, c)$ be the maximum happiness for the first i people with a cost equal or less than c. For example, $h(2,4)=6$ in the previous example by choosing a good gift for person 1 (cost 2, happiness 4) and a bad gift for person 2 (cost 2, happiness 2). Provide a recursive definition for $h(i, c)$. That is, show how to calculate h for i people from the values for $i-1$ people.
(c) Write a dynamic programing algorithm to compute h. What are the asymptotic running time and asymptotic space requirements for your algorithm? Explain your answer.

