
CS 5633 Analysis of Algorithms – Spring 12

1/26/12

2. Homework
Due 2/2/12 before class

Always justify your answers. All algorithms should be as efficient as possible and all
runtimes should be as tight as possible.

1. Guessing and Induction

For each of the following recurrences use the recursion tree method to find a good
guess of what it could solve to (make your guess as tight as possible). Then prove
that T (n) is in big-Oh of your guess by induction (inductive step and base case).
(Hint: Appendix A in the book has a list of solved summations that might be
helpful. For simplicity you may want to use log3 n instead of log2 n in some
cases.)

Every recursion below is stated for n ≥ 2, and the base case is T (1) = 1.

(a) T (n) = 16T (n4 ) + n2

(b) T (n) = 4T (n3 ) + n3

2. Master theorem
Use the master theorem to find tight asymptotic bounds for the following
recurrences. Justify your answers (by showing which case of the master theorem
applies, and why.) Assume that T (1) = 1. You should be able to solve this
without using a calculator.

(a) T (n) = 81T (n3 ) + n4 log4 n

(b) T (n) = T (3n4 ) +
√
n

(c) T (n) = 9T (n4 ) + n3 log n

(d) T (n) = 9T (n3 ) + log log n

3. Tiling a room
Suppose you want to tile the floor of one of the rooms in your house. Your room
has a quadratic shape of n× n square feet, where n is a power of two. Think of
your room as being made up of n2 squares. Your room is part of an old house in
which one of the squares is taken up by an old heat vent, so, effectively there are
only n2 − 1 squares to cover with tiles in your room. You are going to use tiles
that have a strange shape: They are each three square foot large and consist of
three equal-sized squares glued together in a rectangular corner-shape.

Give a divide-and-conquer algorithm to tile this room with these corner-shape
tiles, for any n ≥ 2 that is a power of two. Give an abstract problem definition,
describe your algorithm in words and in pseudocode, argue why your algorithm is
correct (no formal proof required), and analyze the runtime by setting up a
runtime recurrence and solving it using the Master Theorem.

Flip over to back page =⇒



4. Strassen

(a) Consider multiplying a mn× n matrix with a n×mn matrix. Give an
efficient algorithm that solves this task using Strassen’s algorithm as a
subroutine. Make your algorithm as efficient as possible. What is the
runtime of your algorithm in terms of m and n?

(b) Consider multiplying a n×mn matrix by a mn× n matrix. Give an
efficient algorithm that solves this task using Strassen’s algorithm as a
subroutine. Make your algorithm as efficient as possible. What is the
runtime of your algorithm in terms of m and n?

(c) Suppose you want to develop an algorithm to multiply two n× n matrices in
time faster than Strassen’s algorithm. Suppose your algorithm proceeds in
dividing the problem up into parts of size n

4 ×
n
4 , and that your divide and

combine steps together take Θ(n2) time. You would like to find out how
many subproblems you need in order to be faster than Strassen’s algorithm.
If you have a subproblems the recurrence is T (n) = aT (n4 ) + Θ(n2). Find
the largest (integer) value of a for which your algorithm would be
asymptotically faster than Strassen’s.


