# CS 5633 Analysis of Algorithms - Spring 12 

## 10. Homework

Due $4 / 19 / 12$ before class

## 1. Dijkstra variants

(a) Let $G$ be a directed graph with non-negative edge weights. Consider changing the condition in the while loop of Dijkstra's algorithm to $|Q|>1$. Prove that at the end of the algorithm the $d$-values contain the shortest path weights (so, the shortest path weights are correctly computed even when skipping the last iteration from Dijkstra's algorithm).
(b) Let $G$ be a directed graph with non-negative edge weights. Consider changing the condition in the while loop of Dijkstra's algorithm to $|Q|>2$. Show that at the end of the algorithm the $d$-values do not necessarily contain the shortest path weights (give a counter-example).
(c) Now, let $G$ be a directed graph with arbitrary edge weights, and assume that some of the edge weights are negative. Let $W$ be the smallest (negative) weight of any edge. Consider reweighing each edge weight by adding $-W$ to every edge, which yields a graph $G^{\prime}$ with non-negative edge weights. Then run Dijkstra's algorithm on $G^{\prime}$, and in the end add $W$ to every computed $d$-value. Give a counter-example to show that this approach does not always compute the correct $d$-values.

## 2. Floyd-Warshall

(a) Show how to use the Floyd Warshall algorithm to detect whether a weighted graph contains a negative weight cycle.
(b) Suppose you run the Floyd Warshall algorithm for $k=1$ to $n-1$, and not to $n$. Does this still compute the correct output? Justify your answer.
(c) In the Floyd Warshall algorithm, can you switch the order of the three forloops and still compute the correct output? Justify your answer.

## 3. $\mathbf{P}$ or NP?

Which of the problems below are in P or not? Which of the problems below are in NP or not? Justify your answers.
(a) Given an array $A$ of $n$ numbers. Does $A$ have the structure of a min-heap?
(b) Compute a heap from an array $A$ of $n$ numbers.
(c) Given an array $A$ of $n$ numbers, and a number $k$. Does $A$ contain the number $k$ ?
(d) Given an array $A$ of $n$ numbers, and a number $k$, is there a subset of numbers in $A$ that sum up to exactly $k$ ?
(e) Given a directed graph $G=(V, E)$. Is $G$ a DAG?
(f) Given an undirected edge-weighted graph $G=(V, E)$, compute a MST.
(g) Given two undirected graphs $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right)$. Is $H$ an isomorphic subgraph of $G$ ? (Intuitively, this means that $G$ contains a "copy" of $H$. More formally, there is a one-to-one correspondence between all vertices in $V_{H}$ and a subset $V^{\prime}$ of vertices of $V_{G}$ such that each edge in $E_{H}$ corresponds to an edge between vertices in $V^{\prime}$.)

## 4. Reductions

Let $\Pi, \Pi^{\prime}, \Pi^{\prime \prime}$ be three decision problems. Use the definitions of $P, N P$, and the polynomial-time reduction " $\leq$ ", to prove the following three facts (from slide 17):
(a) If $\Pi \in P$ and $\Pi^{\prime} \leq \Pi$ then $\Pi^{\prime} \in P$.
(b) If $\Pi \in N P$ and $\Pi^{\prime} \leq \Pi$ then $\Pi^{\prime} \in N P$.
(c) If $\Pi \leq \Pi^{\prime}$ and $\Pi^{\prime} \leq \Pi^{\prime \prime}$ then $\Pi \leq \Pi^{\prime \prime}$.

