
CS 5633 Analysis of Algorithms – Spring 12

1/19/12

1. Homework
Due 1/26/12 before class

1. Loop invariant (10 points)

Consider the code below which computes bn for all n ≥ 0. Assume b is a constant.

power(b,n){

result = 1;

i = n;

while(i>0){

// Loop invariant:

result = result * b;

i--;

}

return result;

}

(a) State a loop invariant for the while loop that will allow you to prove the
correctness of the algorithm.

(b) Use the loop invariant to prove the correctness of the algorithm. For this you
need to prove by induction that the loop invariant holds for all iterations of
your loop (“base step” and “inductive step”), and then use the loop invariant
in the “termination step” to prove the correctness of the algorithm.

(c) Give the runtime of this algorithm.

2. Code snippets (10 points)

For each of the code snippets below give their Θ-runtime depending on n. Justify
your answers.

(a) Assume that sqrt(k) refers to b
√
kc and that it can be computed in constant

time.

for(i=2*n; i>=1; i=i-3)

for(j=n; j>=4; j=j/5)

for(k=n; k>=2; k=sqrt(k))

print(" ");

(b) for(i=1; i<=n; i++)

for(j=1; j+i<=n; j++)

print(" ");

for(i=1; i<=n; i++)

for(j=1; j*j<=i; j++)

print(" ");

Flip over to back page =⇒



(c) Assume all stack operations take constant time.

for(i=1; i<=n; i++)

stack.push(i);

for(i=1; i<=n; i++){

for(j=n; j>=1; j=j-5*i)

while(!stack.isEmpty())

stack.pop();

3. Big-Oh Proofs (10 points)
Show using the definitions of big-Oh, Ω, and Θ:

(a) 6n3 − 7n2 + 5 ∈ Θ(n3)

(b) 4n3 + 6n 6∈ O(n2)

(c) Use induction to prove n! ∈ Ω(2n)

4. Big-Oh ranking (10 points)
Rank the following eleven functions by order of growth, i.e., find an arrangement
f1, f2, ... of the functions satisfying f1 ∈ O(f2), f2 ∈ O(f3),... . Partition your
list into equivalence classes such that f and g are in the same class if and only if
f ∈ Θ(g). For every two functions fi, fj that are adjacent in your ordering, prove
shortly why fi ∈ O(fj) holds. And if f and g are in the same class, prove that
f ∈ Θ(g).

2n log2 n n2

log log n n
√
n 22n

log n
√
n log(2n)

log
√
n n log n

As a reminder: log2 n = (log n)2 and log log n = log(log n). Bear in mind that in
some cases it might be useful to show f(n) ∈ o(g(n)), since o(g(n)) ⊂ O(g(n)). If
you try to show that f(n) ∈ o(g(n)), then it might be useful to apply the rule of
l’Hôpital which states that

lim
n→∞

f(n)

g(n)
= lim

n→∞

f ′(n)

g′(n)

if the limits exist; where f ′(n) and g′(n) are the derivatives of f and g, respectively.


