CS 5633 -- Spring 2011

Union-Find Data Structures Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Disjoint-set data structure (Union-Find)

Problem:

- Maintain a dynamic collection of pairwise-disjoint sets $S=\left\{S_{1}, S_{2}, \ldots, S_{r}\right\}$.
- Each set S_{i} has one element distinguished as the representative element, rep $\left[S_{\mathrm{i}}\right]$.
- Must support 3 operations:
- Make-Set(x): adds new set $\{x\}$ to S with $\operatorname{rep}[\{x\}]=x$ (for any $x \notin S_{i}$ for all i)
- $\operatorname{Union}(x, y)$: replaces sets S_{x}, S_{y} with $S_{x} \cup S_{y}$ in S
(for any x, y in distinct sets S_{x}, S_{y})
- Find-Set (x) : returns representative rep[S_{x}] of set S_{x} containing element x

Union-Find Example

$$
S=\{ \} \quad \begin{gathered}
\text { The representative is } \\
\text { underlined }
\end{gathered}
$$

$$
S=\{\{\underline{2}\}\}
$$

$$
S=\{\{\underline{2}\},\{\underline{3}\}\}
$$

$$
S=\{\{\underline{2}\},\{\underline{3}\},\{\underline{4}\}\}
$$

Find-Set(4) = 4
Union(2, 4)
$S=\{\{\underline{2}, 4\},\{\underline{3}\}\}$
Find-Set(4) = 2
Make-Set(5)

$$
\begin{aligned}
& S=\{\{\underline{2}, 4\},\{\underline{3}\},\{\underline{5}\}\} \\
& S=\{\{\underline{2}, 4,5\},\{\underline{3}\}\}
\end{aligned}
$$

Application: Dynamic connectivity

Suppose a graph is given to us incrementally by

- Add-Vertex(v)
- Add-Edge(u, v)
and we want to support connectivity queries:
- Connected (u, v):

Are u and v in the same connected component?
For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.

Application: Dynamic connectivity

Sets of vertices represent connected components. Suppose a graph is given to us incrementally by

- Add-Vertex(v) : Make-Set(v)
- Add-Edge (u, v) : if not Connected (u, v) then $\operatorname{Union}(u, v)$
and we want to support connectivity queries:
- $\operatorname{Connected}(u, v)$: $\operatorname{Find}-\operatorname{Set}(u)=\operatorname{Find}-\operatorname{Set}(v)$

Are u and v in the same connected component?
For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.

Disjoint-set data structure (Union-Find) II

- In all operations pointers to the elements x, y in the data structure are given.
- Hence, we do not need to first search for the element in the data structure.
- Let n denote the overall number of elements (equivalently, the number of MAKE-SET operations).

Simple linked-list solution

Store each set $S_{i}=\left\{x_{1}, x_{2}, \ldots, x_{\mathrm{k}}\right\}$ as an (unordered) doubly linked list. Define representative element $\operatorname{rep}\left[S_{i}\right]$ to be the front of the list, x_{1}.
S_{i} :

$\Theta(1) \cdot \operatorname{MaKe}-\operatorname{Set}(x)$ initializes x as a lone node.

- Find-Set (x) walks left in the list containing
$\Theta(n) \quad x$ until it reaches the front of the list.
$\Theta(n) \cdot \operatorname{Union}(x, y)$ calls Find-Set on y, finds the last element of list x, and concatenates both lists, leaving rep. as Find-Set[x].

Simple balanced-tree solution maintain how?

Store each set $S_{i}=\left\{x_{1}, x_{2}, \ldots, x_{\mathrm{k}}\right\}$ as abalanced tree (ignoring keys). Define representative element $\operatorname{rep}\left[S_{i}\right]$ to be the root of the tree.

- Make-Set(x) initializes x

$$
S_{i}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}
$$

$\Theta(1)$ as a lone node.

- Find-Set(x) walks up the tree $\Theta(\log n)$ containing x until reaching root.
\bullet Union (x, y) calls Find-Set on $\Theta(\log n) y$, finds a leaf of x and concatenates both trees, changing rep. of y

Plan of attack

- We will build a simple disjoint-union data structure that, in an amortized sense, performs significantly better than $\Theta(\log n)$ per op., even better than $\Theta(\log \log n), \Theta(\log \log \log n), \ldots$, but not quite $\Theta(1)$.
- To reach this goal, we will introduce two key tricks. Each trick converts a trivial $\Theta(n)$ solution into a simple $\Theta(\log n)$ amortized solution. Together, the two tricks yield a much better solution.
- First trick arises in an augmented linked list. Second trick arises in a tree structure.

Augmented linked-list solution

Store $S_{i}=\left\{x_{1}, x_{2}, \ldots, x_{\mathrm{k}}\right\}$ as unordered doubly linked list. Augmentation: Each element x_{j} also stores pointer $\operatorname{rep}\left[x_{j}\right]$ to rep $\left[S_{i}\right]$ (which is the front of the list, x_{1}).

- Find-Set (x) returns rep $[x]$.
$-\Theta(1)$
- Union (x, y) concatenates lists containing x and y and updates the rep pointers for all elements in the list containing y.

Example of augmented linked-list solution

Each element x_{j} stores pointer rep $\left[x_{j}\right]$ to rep $\left[S_{i}\right]$. $\operatorname{Union}(x, y)$

- concatenates the lists containing x and y, and
- updates the rep pointers for all elements in the list containing y.

Example of augmented linked-list solution

Each element x_{j} stores pointer rep $\left[x_{j}\right]$ to rep $\left[S_{i}\right]$. $\operatorname{Union}(x, y)$

- concatenates the lists containing x and y, and
- updates the rep pointers for all elements in the list containing y.
$S_{x} \cup S_{y}:$
rep

Example of augmented linked-list solution

Each element x_{j} stores pointer rep $\left[x_{j}\right]$ to rep $\left[S_{i}\right]$. $\operatorname{Union}(x, y)$

- concatenates the lists containing x and y, and
- updates the rep pointers for all elements in the list containing y.

Alternative concatenation

$\operatorname{Union}(x, y)$ could instead

- concatenate the lists containing y and x, and
- update the rep pointers for all elements in the list containing x.

Alternative concatenation

$\operatorname{Union}(x, y)$ could instead

- concatenate the lists containing y and x, and
- update the rep pointers for all elements in the list containing x.

Alternative concatenation

$\operatorname{Union}(x, y)$ could instead

- concatenate the lists containing y and x, and
- update the rep pointers for all elements in the list containing x.

Trick 1: Smaller into larger (weighted-union heuristic)

To save work, concatenate the smaller list onto the end of the larger list. Cost $=\Theta$ (length of smaller list). Augment list to store its weight (\# elements).

- Let n denote the overall number of elements (equivalently, the number of Maкe-Set operations).
- Let m denote the total number of operations.
- Let f denote the number of Find-Set operations.

Theorem: Cost of all Union's is $\mathrm{O}(n \log n)$.
Corollary: Total cost is $\mathrm{O}(m+n \log n)$.

Analysis of Trick 1

(weighted-union heuristic)

Theorem: Total cost of Union's is $\mathrm{O}(n \log n)$.
Proof. • Monitor an element x and set S_{x} containing it.

- After initial MAKE-SET(x), weight $\left[S_{x}\right]=1$.
- Each time S_{x} is united with S_{y} :
- if weight $\left[S_{y}\right] \geq$ weight $\left[S_{x}\right]$:
- pay 1 to update rep[x], and
- weight $\left[S_{x}\right]$ at least doubles (increases by weight $\left[S_{y}\right]$).
- if weight $\left[S_{y}\right]<$ weight $\left[S_{\chi}\right]$:
- pay nothing, and
- weight $\left[S_{\chi}\right]$ only increases.

Thus pay $\leq \log n$ for x.

Disjoint set forest: Representing sets as trees

Store each set $S_{i}=\left\{x_{1}, x_{2}, \ldots, x_{\mathrm{k}}\right\}$ as an unordered, potentially unbalanced, not necessarily binary tree, storing only parent pointers. rep $\left[S_{i}\right]$ is the tree root.

- Make-Set(x) initializes x as a lone node. $\quad-\Theta(1)$
- Find-Set(x) walks up the tree containing x until it reaches the root. $-\Theta($ depth $[x])$
- Union (x, y) calls Find-Set twice and concatenates the trees containing x and $y \ldots-\Theta(\operatorname{depth}[x])$

Trick 1 adapted to trees

- Union (x, y) can use a simple concatenation strategy: Make root Find-Set(y) a child of root Find-Set(x). \Rightarrow Find-SET $(y)=\operatorname{Find}-\operatorname{Set}(x)$.
- Adapt Trick 1 to this context: Union-by-weight:
Merge tree with smaller weight into tree with larger weight.
- Variant of Trick 1 (see book): Union-by-rank:
rank of a tree = its height

Trick 1 adapted to trees (union-by-weight)

- Height of tree is logarithmic in weight, because:
- Induction on n
- Height of a tree T is determined by the two subtrees T_{1}, T_{2} that T has been united from.
- Inductively the heights of T_{1}, T_{2} are the logs of their weights.
- If T_{1} and T_{2} have different heights:

$$
\begin{aligned}
\operatorname{height}(\bar{T}) & =\max \left(\operatorname{height}\left(T_{1}\right), \text {, } \operatorname{height}\left(T_{2}\right)\right) \\
& =\max \left(\log \text { weight }\left(T_{1}\right), \log \text { weight }\left(T_{2}\right)\right) \\
& <\log \operatorname{weight}(T)
\end{aligned}
$$

- If T_{1} and T_{2} have the same heights:
(Assume $2 \leq$ weight $\left(T_{1}\right)<$ weight $\left(T_{2}\right)$)
$\operatorname{height}(T)=\operatorname{height}\left(T_{1}\right)+1=\log \left(2 *\right.$ weight $\left.\left(T_{1}\right)\right)$
$\leq \log$ weight(T)
- Thus the total cost of any m operations is $\mathrm{O}(m \log n)$.

Trick 2: Path compression

When we execute a Find-Set operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

Cost of Find-SET(x) is still $\Theta($ depth $[x])$.

Trick 2: Path compression

When we execute a Find-Set operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

Cost of Find-SET(x) is still $\Theta($ depth $[x])$.

Trick 2: Path compression

When we execute a Find-Set operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

Cost of Find-SET(x) is still Θ (depth $[x])$.

Find-Set $\left(y_{2}\right)$

Trick 2: Path compression

- Note that $\operatorname{UNION}(x, y)$ first calls FIND-SET(x) and FIND-SET(y). Therefore path compression also affects UNION operations.

Analysis of Trick 2 alone

Theorem: Total cost of Find-SET's is $\mathrm{O}(m \log n)$. Proof: By amortization. Omitted.

Ackermann's function A, and it's "inverse" α

Define $A_{k}(j)= \begin{cases}j+1 & \text { if } k=0, \\ (j-1)(j)\end{cases}$
Define $A_{k}(j)=\left\{\begin{array}{l}A_{k-1}^{(j+1)}(j) \text { if } k \geq 1 . \quad-\text { iterate } j+1 \text { times }\end{array}\right.$

$$
\begin{aligned}
A_{0}(j)=j+1 & A_{0}(1)=2 \\
A_{1}(j) \sim 2 j & A_{1}(1)=3 \\
A_{2}(j) \sim 2 j 2^{j}>2^{j} & A_{2}(1)=7 \\
\left.\quad 2^{j}\right\} & A_{3}(1)=2047
\end{aligned}
$$

$$
\left.A_{3}(j)>2^{2^{2^{2^{j}}}}\right\} j
$$

$A_{4}(j)$ is a lot bigger. $\left.A_{4}(1)>2^{2^{2^{2^{2047}}}}\right\} 2048$ times
Define $\alpha(n)=\min \left\{k: A_{k}(1) \geq n\right\} \leq 4$ for practical n.

ALGORITHMS Analysis of Tricks $1+2$ for disjoint-set forests

Theorem: In general, total cost is $\mathrm{O}(m \alpha(n))$. (long, tricky proof - see Section 21.4 of CLRS)

