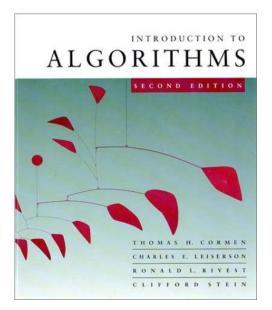
CS 5633 -- Spring 2010



Graphs

Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CS 5633 Analysis of Algorithms

1

Graphs (review)

Definition. A *directed graph* (*digraph*) G = (V, E) is an ordered pair consisting of

- a set *V* of *vertices* (singular: *vertex*),
- a set $E \subseteq V \times V$ of *edges*.

In an *undirected graph* G = (V, E), the edge set *E* consists of *unordered* pairs of vertices.

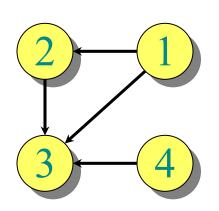
In either case, we have $|E| = O(|V|^2)$. Moreover, if *G* is connected, then $|E| \ge |V| - 1$.

(Review CLRS, Appendix B.4 and B.5.)

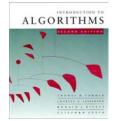
Adjacency-matrix representation

The *adjacency matrix* of a graph G = (V, E), where $V = \{1, 2, ..., n\}$, is the matrix A[1 ... n, 1 ... n] given by

$$A[i,j] = \begin{cases} 1 & \text{if } (i,j) \in \mathcal{E}, \\ 0 & \text{if } (i,j) \notin \mathcal{E}. \end{cases}$$

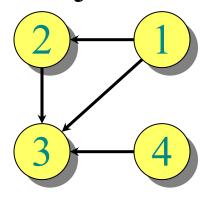


 $\Theta(|V|^2)$ storage \Rightarrow *dense* representation.



Adjacency-list representation

An *adjacency list* of a vertex $v \in V$ is the list Adj[v] of vertices adjacent to v.



$$Adj[1] = \{2, 3\}$$

 $Adj[2] = \{3\}$
 $Adj[3] = \{\}$
 $Adj[4] = \{3\}$

For undirected graphs, |Adj[v]| = degree(v). For digraphs, |Adj[v]| = out-degree(v).



Adjacency-list representation

Handshaking Lemma:

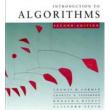
Every edge is counted twice

- For undirected graphs: $\sum_{v \in V} degree(v) = 2|E|$
- For digraphs:

 $\sum_{v \in V} in-degree(v) + \sum_{v \in V} out-degree(v) = 2 \mid E \mid$

- \Rightarrow adjacency lists use $\Theta(|V| + |E|)$ storage
- \Rightarrow a *sparse* representation
- ⇒ We usually use this representation, unless stated otherwise

3/25/10



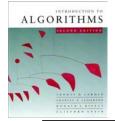
Graph Traversal

Let G=(V,E) be a (directed or undirected) graph, given in adjacency list representation.

$$|V|=n, |E|=m$$

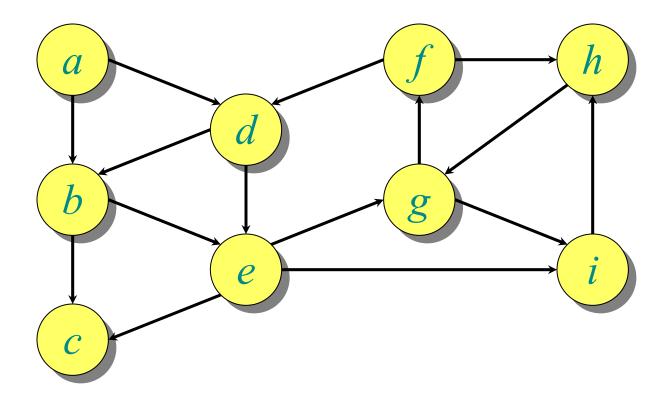
A graph traversal visits every vertex:

- Breadth-first search (BFS)
- Depth-first search (DFS)

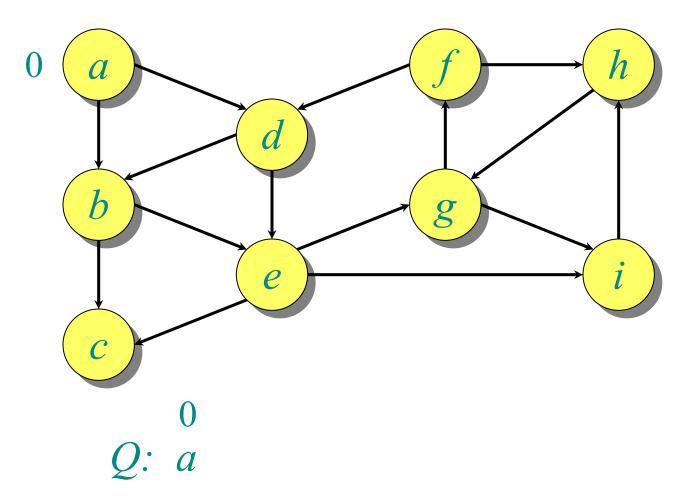


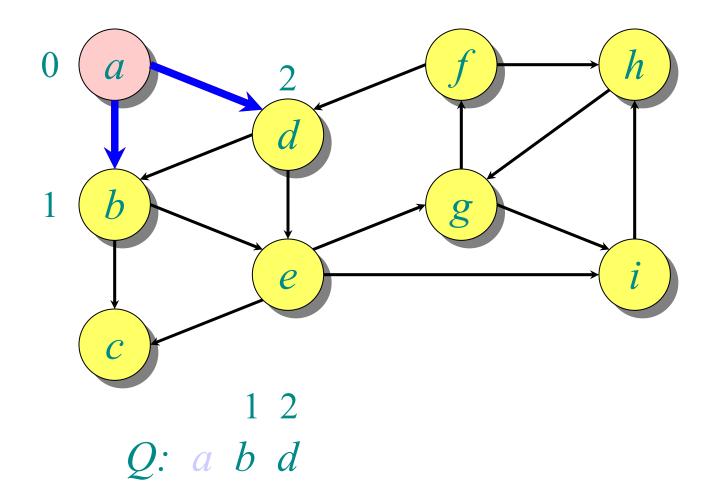
Breadth-First Search (BFS)

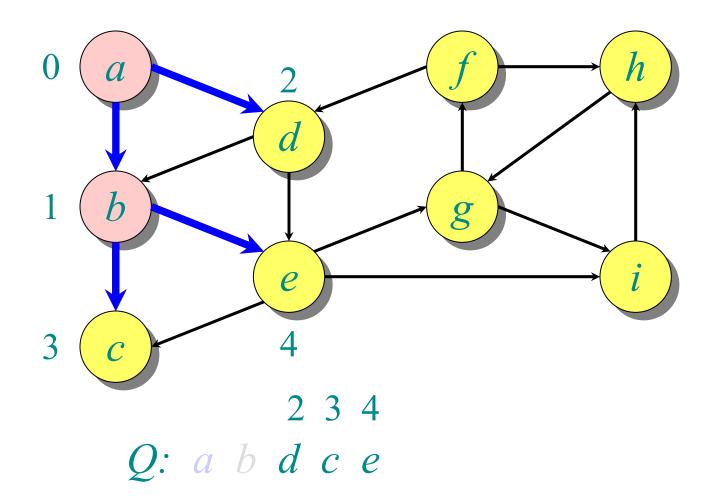
BFS(G=(V,E))Mark all vertices in G as "unvisited" // time=0 Initialize empty queue Qfor each vertex $v \in V$ do if v is unvisited visit v // time++ BFS iter(G) Q.enqueue(v) while *Q* is non-empty **do** BFS iter(G) v = Q.dequeue() for each w adjacent to v do if w is unvisited visit w // time++ Add edge (v, w) to T Q.enqueue(w)

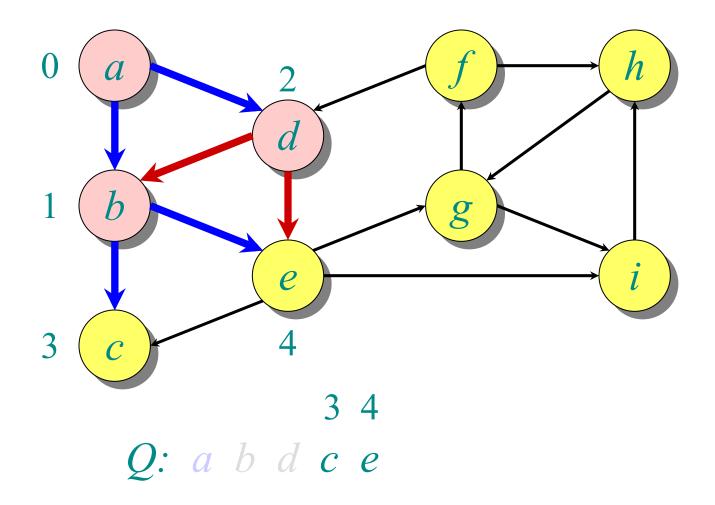


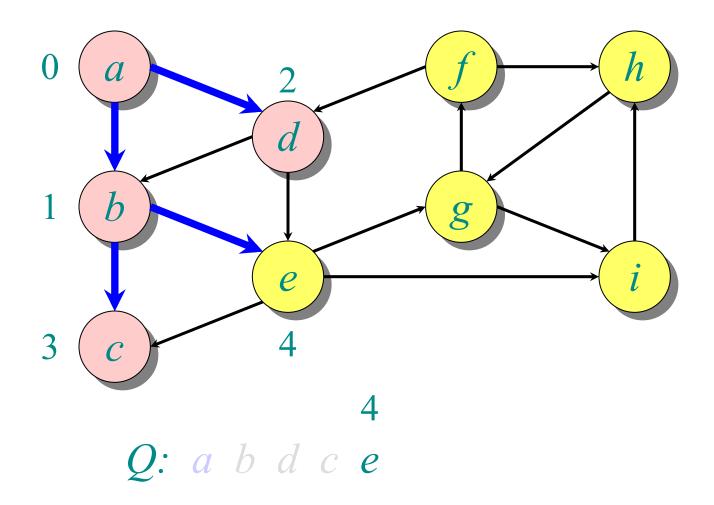
Q:

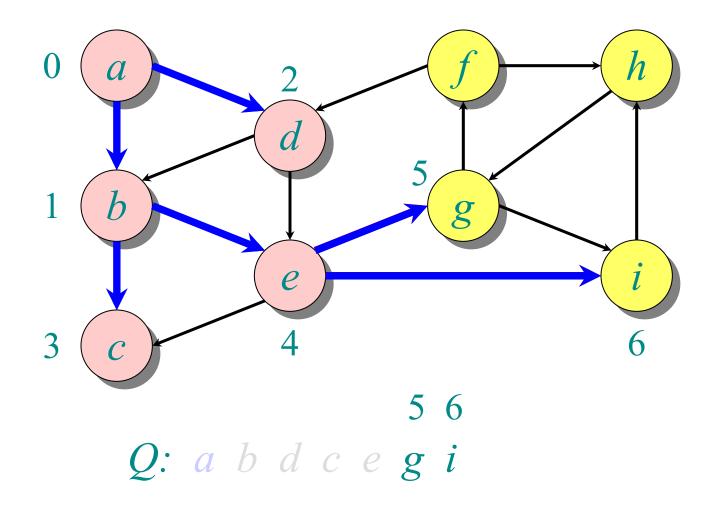


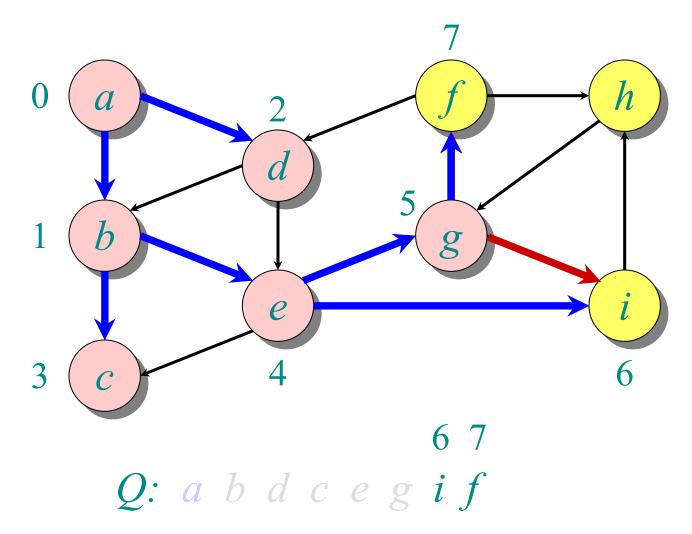


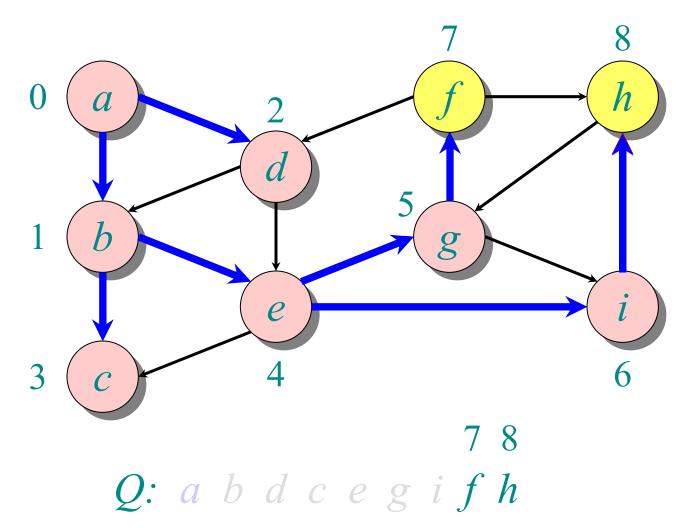


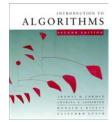


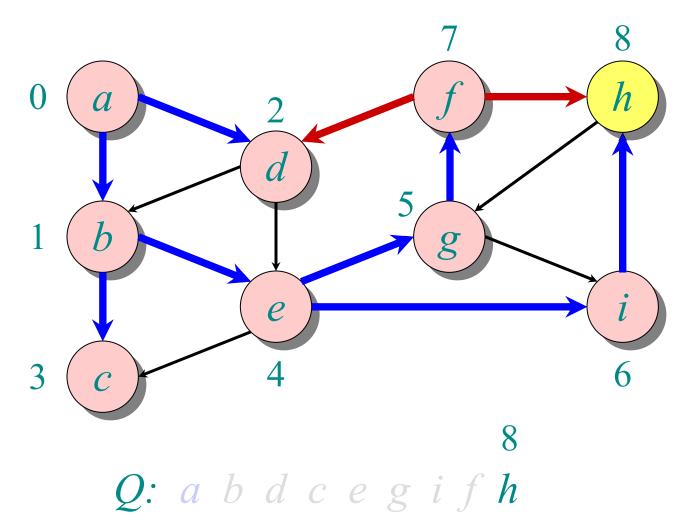


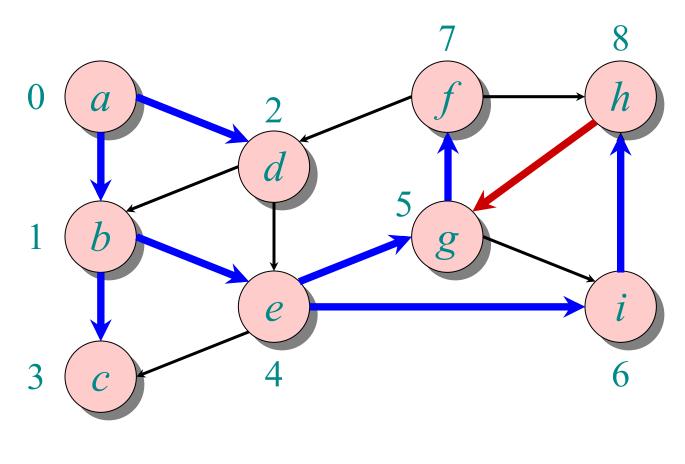




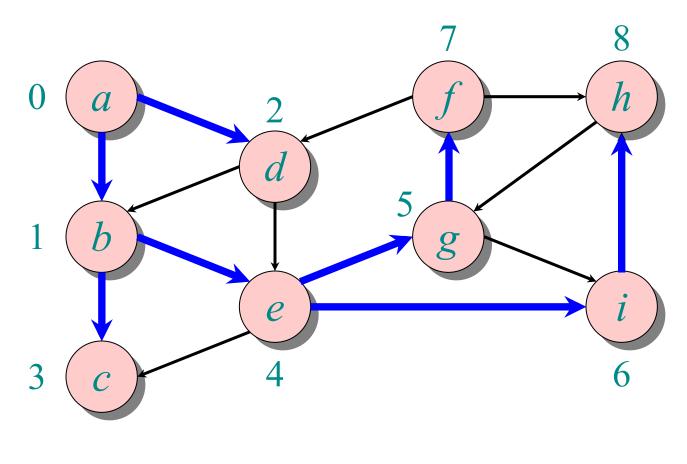




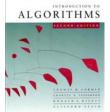




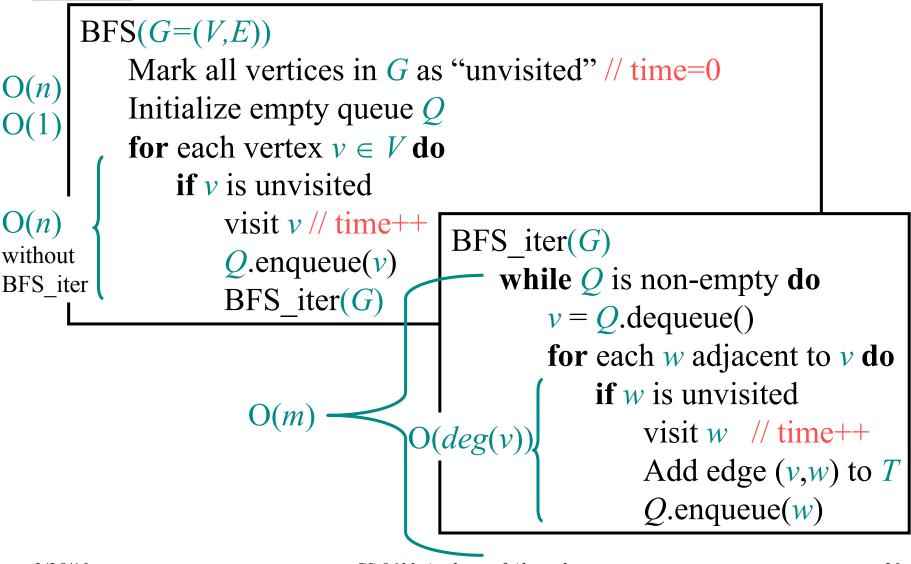
Q: a b d c e g i f h



Q: a b d c e g i f h



Breadth-First Search (BFS)



BFS runtime

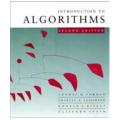
- Each vertex is marked as unvisited in the beginning $\Rightarrow O(n)$ time
- Each vertex is marked at most once, enqueued at most once, and therefore dequeued at most once
- The time to process a vertex is proportional to the size of its adjacency list (its degree), since the graph is given in adjacency list representation
- $\Rightarrow O(m)$ time
- Total runtime is O(n+m) = O(|V| + |E|)

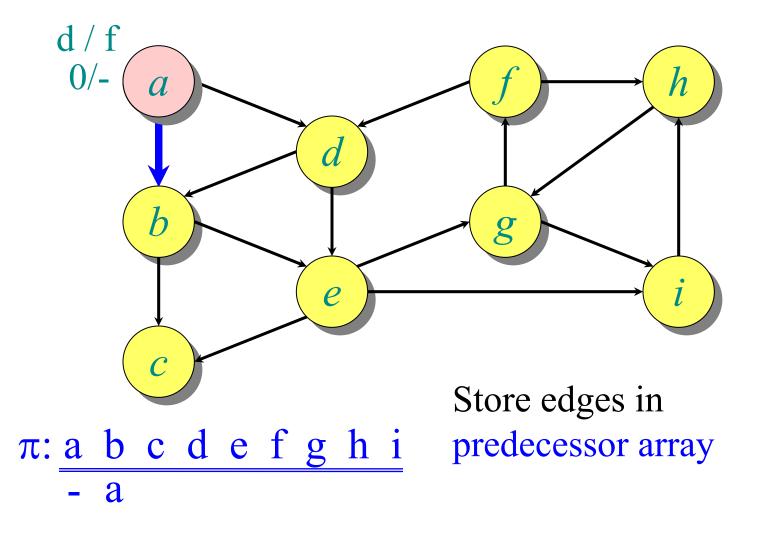
Depth-First Search (DFS)

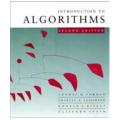
DFS(G=(V,E))

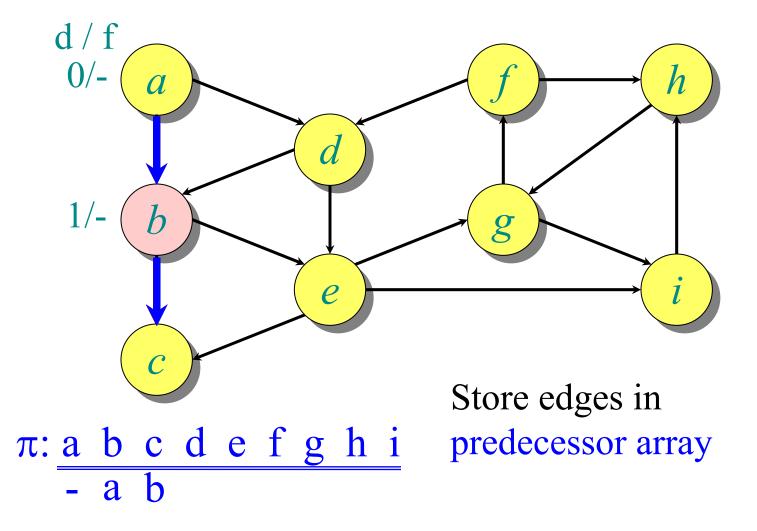
Mark all vertices in G as "unvisited" // time=0 for each vertex $v \in V$ do if v is unvisited DFS_rec(G,v)

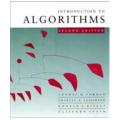
DFS_rec(G, v) visit v // d[v] = ++timefor each w adjacent to v do if w is unvisited Add edge (v,w) to tree TDFS_rec(G,w) // f[v] = ++time

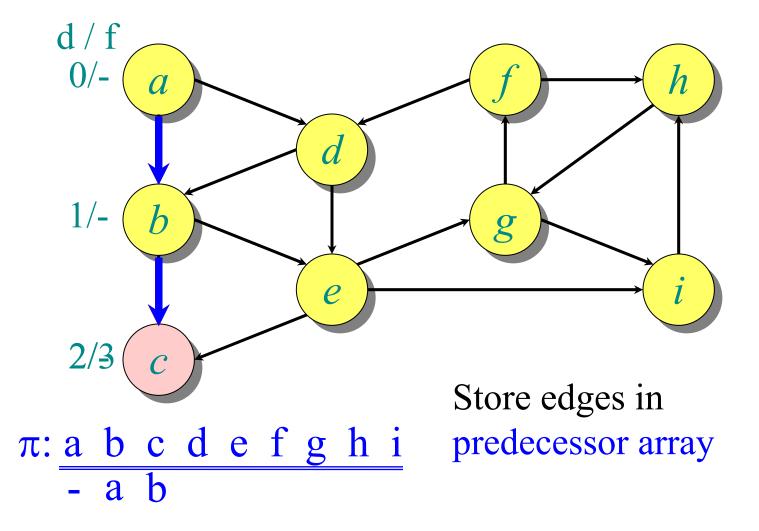


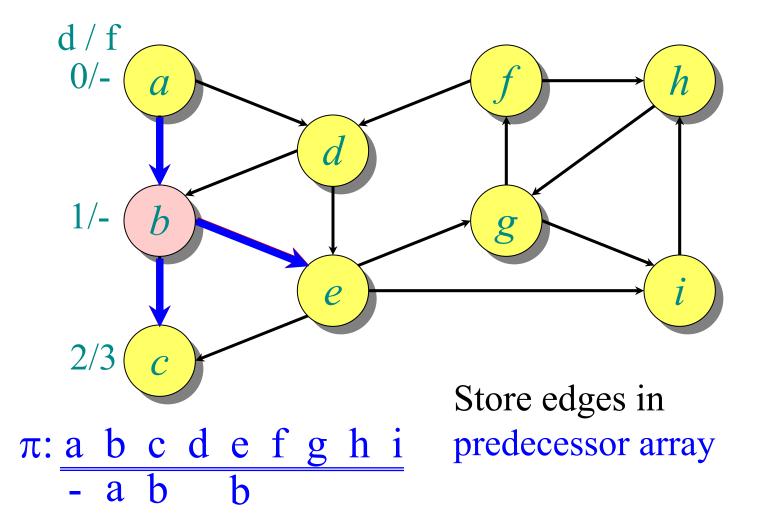


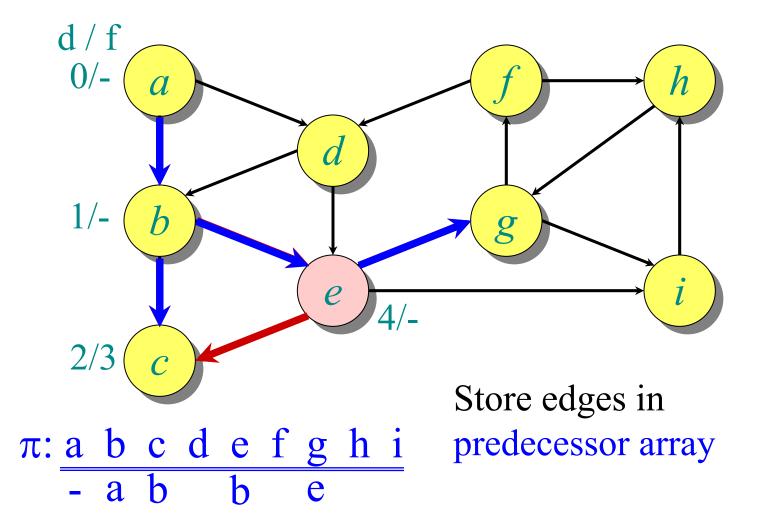


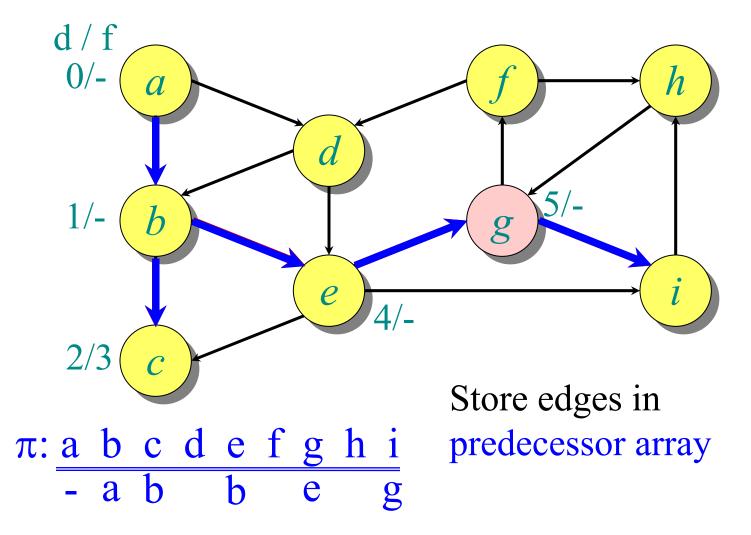


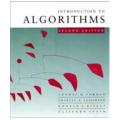


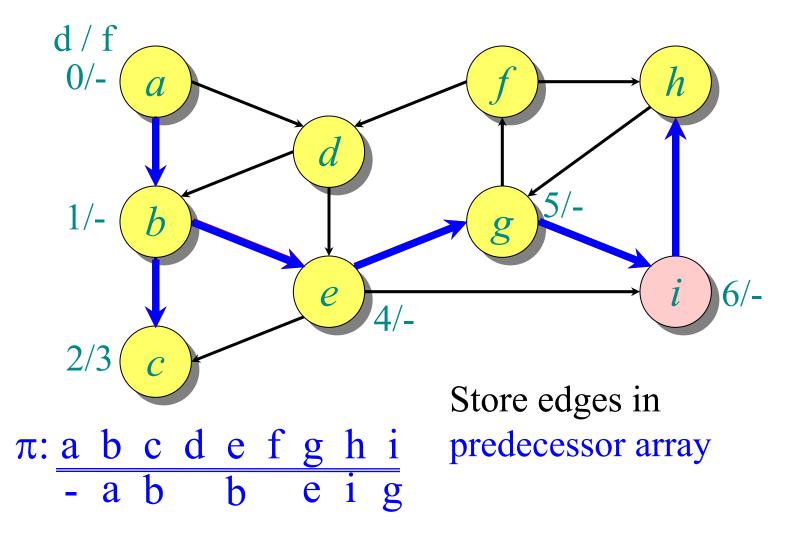


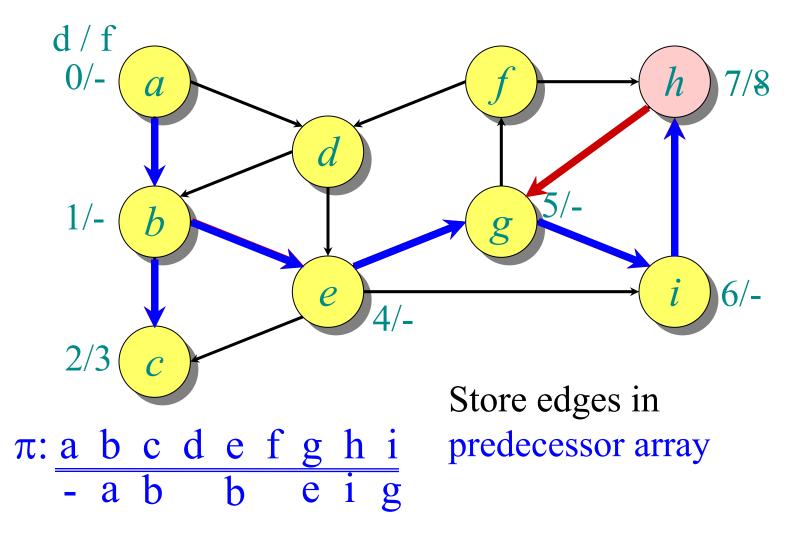


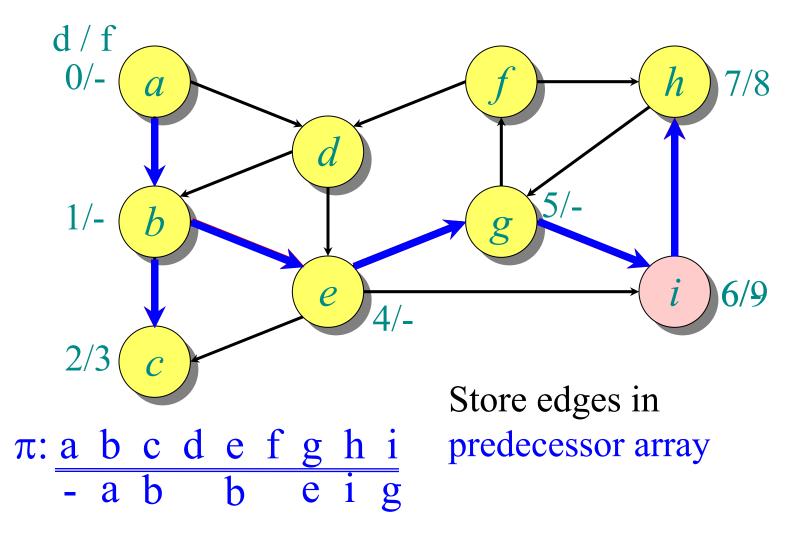


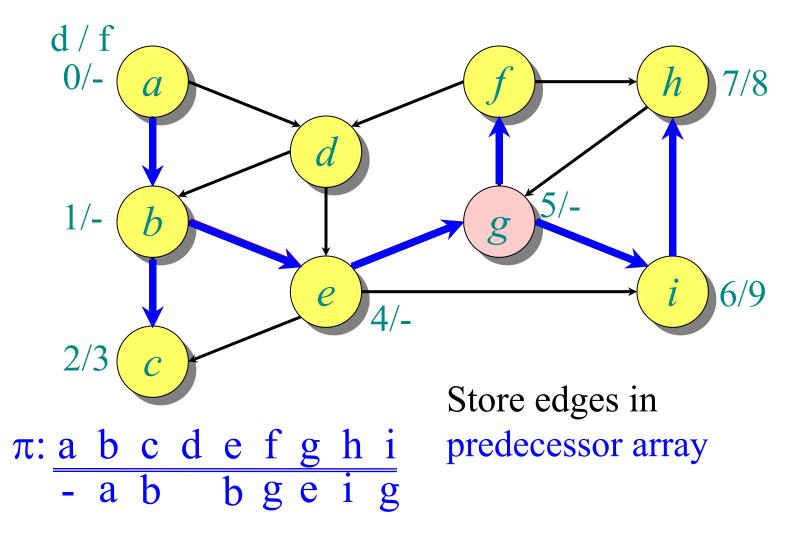


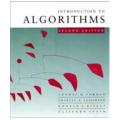


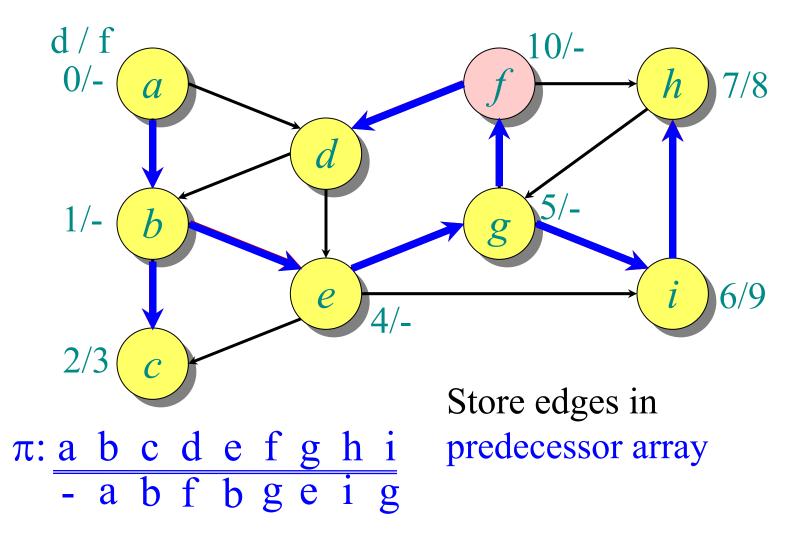


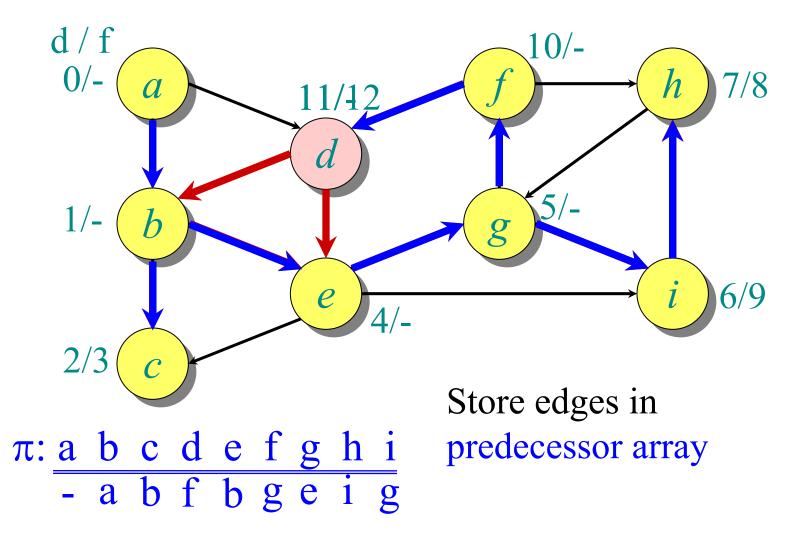


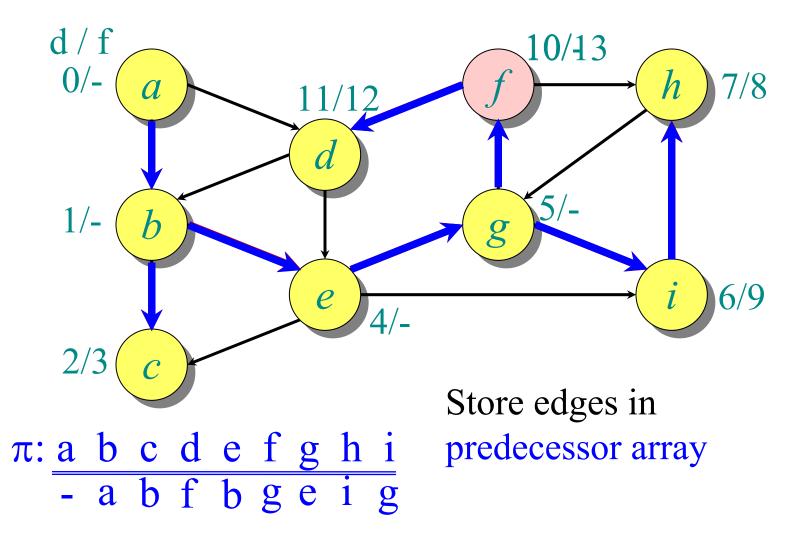


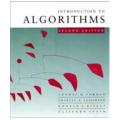


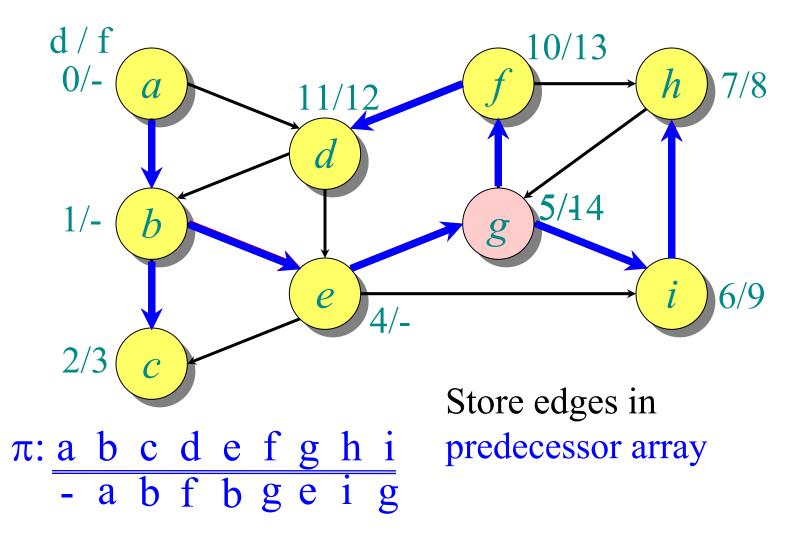


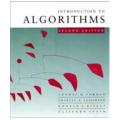




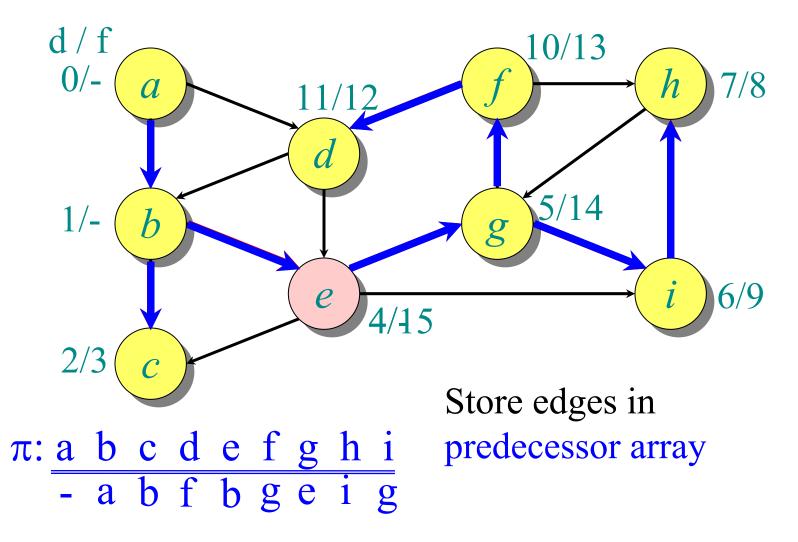




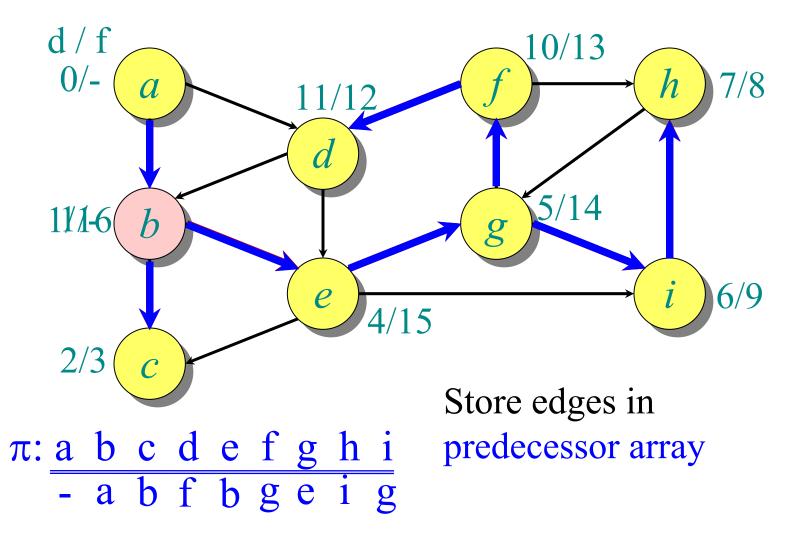




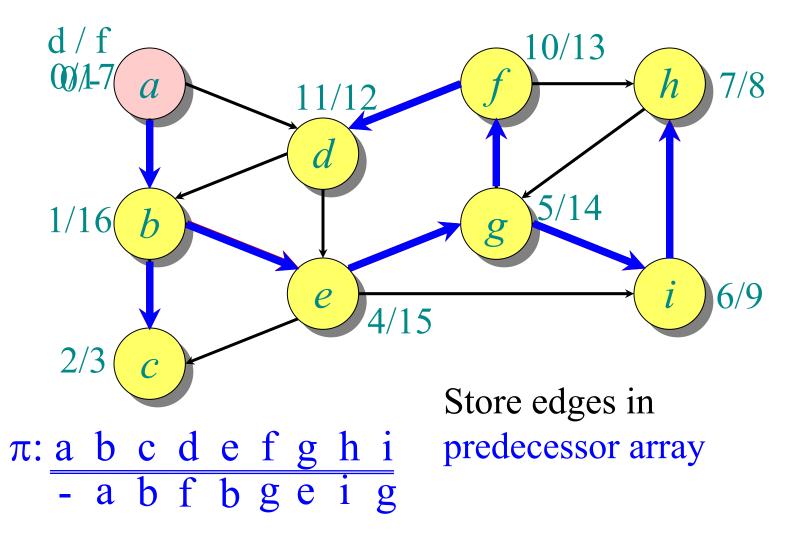
Example of depth-first search

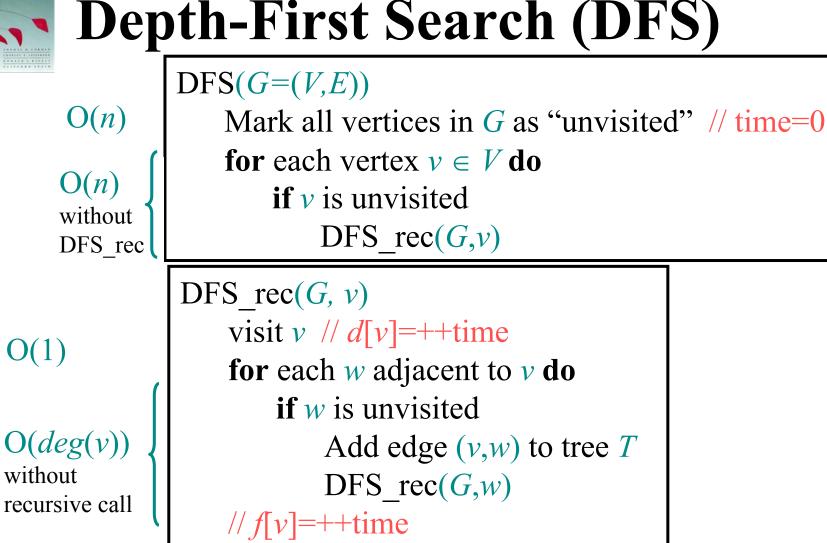


Example of depth-first search



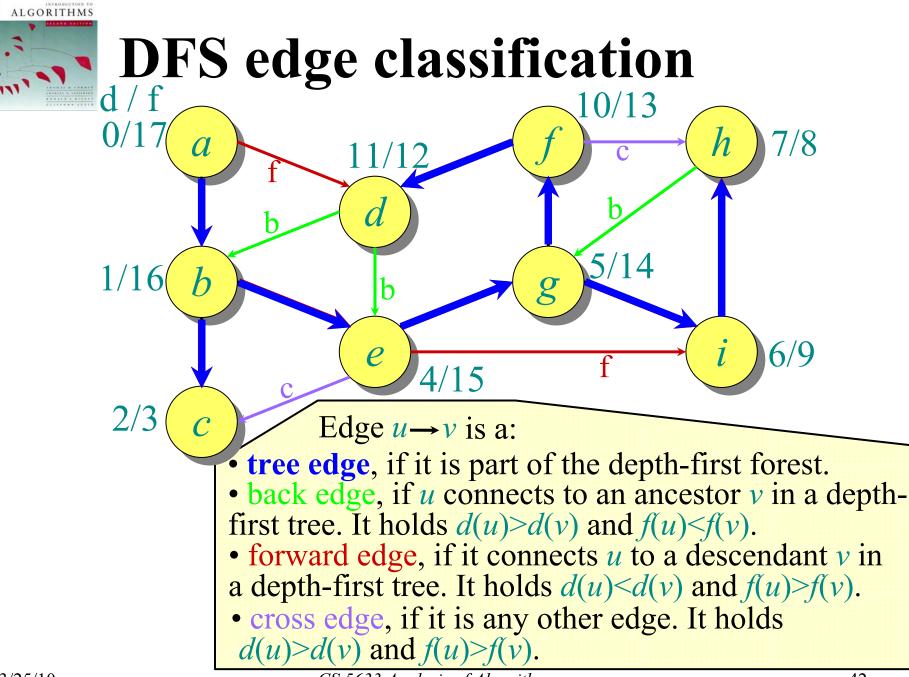
Example of depth-first search





 $\Rightarrow \text{With Handshaking Lemma, all recursive calls are } O(m), \text{ for} a total of O(n + m) runtime}$ $\frac{3}{25}{10} \qquad CS 5633 \text{ Analysis of Algorithms}}$

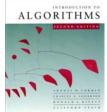
- Each vertex is visited at most once $\Rightarrow O(n)$ time
- The body of the **for** loops (except the recursive call) take constant time per graph edge
- All for loops take O(m) time
- Total runtime is O(n+m) = O(|V| + |E|)





Paths, Cycles, Connectivity

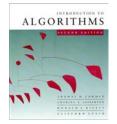
- Let G=(V,E) be a directed (or undirected) graph
- A path from v_1 to v_k in *G* is a sequence of vertices v_1, v_2, \dots, v_k such that $(v_i, v_{\{i+1\}}) \in E$ (or $\{v_i, v_{\{i+1\}}\} \in E$ if *G* is undirected) for all $i \in \{1, \dots, k-1\}$.
- A path is simple if all vertices in the path are distinct.
- A path v_1, v_2, \dots, v_k forms a **cycle** if $v_1 = v_k$ and $k \ge 3$.
- A graph with no cycles is **acyclic**.
 - An undirected acyclic graph is called a **tree**. (Trees do not have to have a root vertex specified.)
 - A directed acyclic graph is a **DAG**. (A DAG can have undirected cycles if the direction of the edges is not considered.)
- An undirected graph is connected if every pair of vertices is connected by a path. A directed graph is strongly connected if for every pair *u*,*v*∈*V* there is a path from *u* to *v* and there is a path from *v* to *u*.
- The (strongly) connected components of a graph are the equivalence classes of vertices under this reachability relation.
 3/25/10 CS 5633 Analysis of Algorithms 43



DAG Theorem

Theorem: A directed graph G is acyclic ⇔ a depth-first search of G yields no back edges. **Proof:**

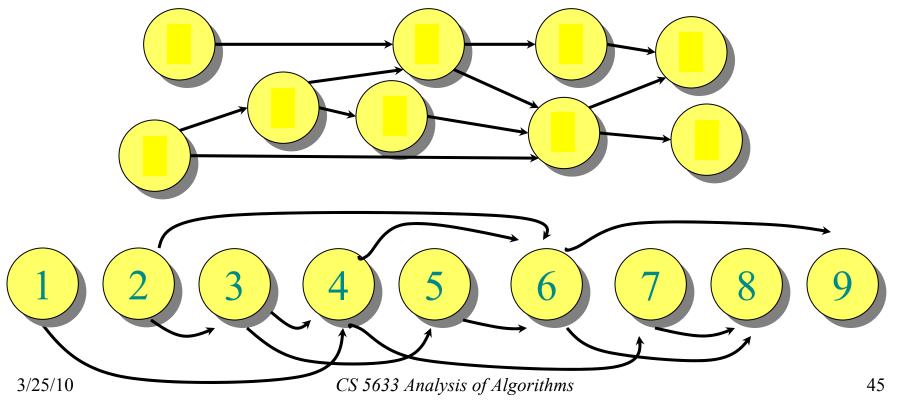
- " \Rightarrow ": Suppose there is a <u>back edge (u,v)</u>. Then by definition of a back edge there would be a cycle.
- "⇐": Suppose G contains a <u>cycle c</u>. Let v be the first vertex to be discovered in c, and let u be the preceding vertex in c. v is an ancestor of u in the depth-first forest, hence (u,v) is a back edge.



Topological Sort

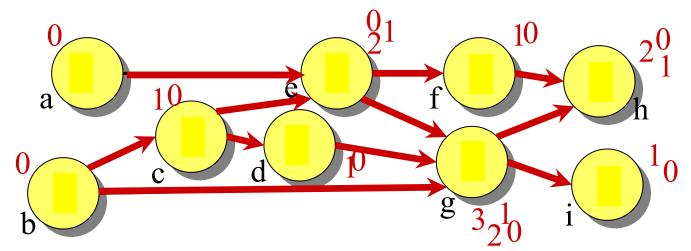
Topologically sort the vertices of a *directed acyclic graph* (*DAG*):

• Determine $f: V \to \{1, 2, ..., |V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u) \le f(v)$.



Topological Sort Algorithm

- Store vertices with in-degree 0 in a queue Q.
- While Q is not empty
 - Dequeue vertex v, and give it the next number
 - Decrease in-degree of all adjacent vertices by 1
 - Enqueue all vertices with in-degree 0



Q: a, b, c, e, d, f, g, i, h

Topological Sort Runtime

Runtime:

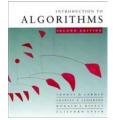
 O(|V|+|E|) because every edge is touched once, and every vertex is enqueued and dequeued exactly once

Depth-First Search Revisited

DFS(G=(V,E))

Mark all vertices in G as "unvisited" // time=0 for each vertex $v \in V$ do if v is unvisited DFS_rec(G,v)

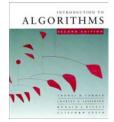
DFS_rec(G, v) visit v // d[v] = ++timefor each w adjacent to v do if w is unvisited Add edge (v,w) to tree TDFS_rec(G,w) // f[v] = ++time



DFS-Based Topological Sort Algorithm

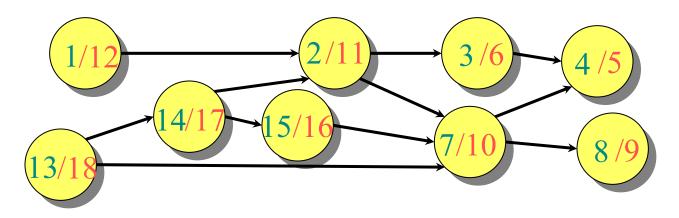
- Call DFS on the directed acyclic graph G=(V,E) \Rightarrow Finish time for every vertex
- Reverse the finish times (highest finish time becomes the lowest finish time,...)
 - $\Rightarrow \text{Valid function } f': V \rightarrow \{1, 2, ..., |V|\} \text{ such that} \\ (u, v) \in E \Rightarrow f'(u) < f'(v)$

Runtime: O(|V|+|E|)

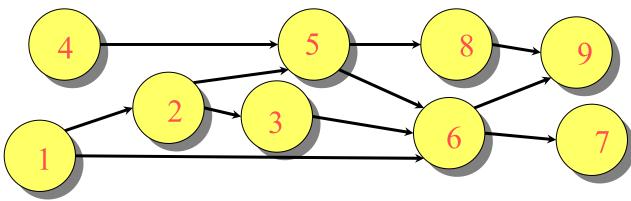


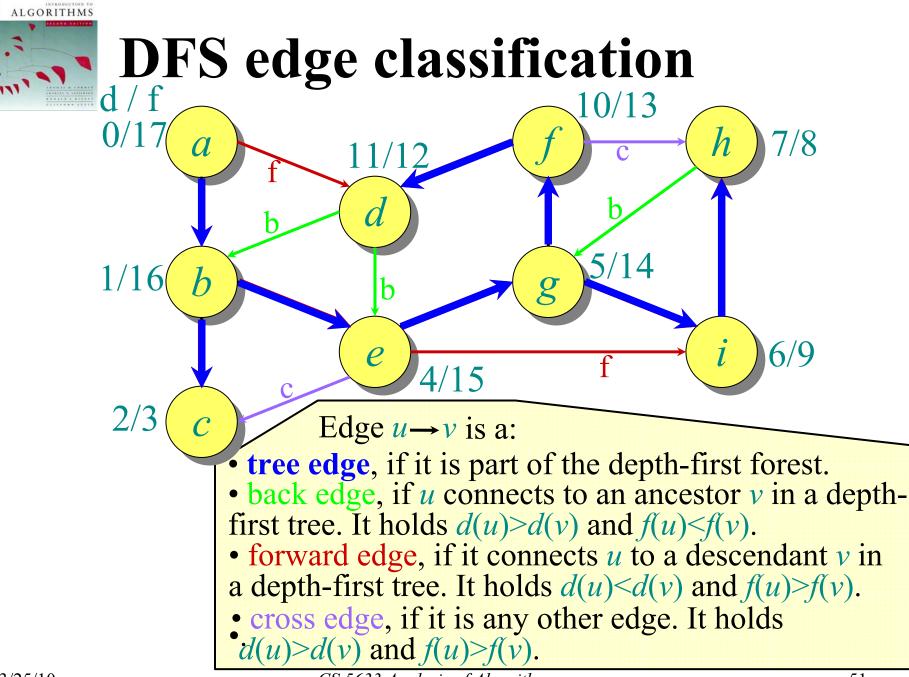
DFS-Based Topological Sort

• Run DFS:



• Reverse finish times:





DFS-Based Top. Sort Correctness

- Need to show that for any $(u, v) \in E$ holds f(v) < f(u). (since we consider reversed finish times)
- Consider exploring edge (u, v) in DFS:
 - v cannot be visited and unfinished (and hence an ancestor in the depth first tree), since then (u,v) would be a back edge (which by the DAG lemma cannot happen).
 - If v has not been visited yet, it becomes a descendant of u, and hence $f(v) \le f(u)$ (tree edge)
 - If v has been finished, f(v) has been set, and u is still being explored, hence f(u) > f(v) (forward edge, cross edge).

Topological Sort Runtime

Runtime:

- O(|V|+|E|) because every edge is touched once, and every vertex is enqueued and dequeued exactly once
- DFS-based algorithm: O(|V| + |E|)