
12/16/10 CS 5633 Analysis of Algorithms

CS 5633 -- Spring 2010

Augmenting Data Structures
Carola Wenk

Slides courtesy of Charles Leiserson with small 
changes by Carola Wenk



22/16/10 CS 5633 Analysis of Algorithms

Dictionaries and Dynamic Sets

Abstract Data Type (ADT) Dictionary :
Insert (x, D): inserts x into D
Delete (x, D): deletes x from D
Find (x, D): finds x in D

Popular implementation uses any balanced search 
tree (not necessarily binary). This way each 
operation takes O(log n) time.

D is a 
dynamic set
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Dynamic order statistics

OS-SELECT(i, S): returns the i th smallest element 
in the dynamic set S.

OS-RANK(x, S): returns the rank of x ∈ S in the 
sorted order of S’s elements.

IDEA: Use a red-black tree for the set S, but keep 
subtree sizes in the nodes.

key
size
key
sizeNotation for nodes:
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Example of an OS-tree
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size[x] = size[left[x]] + size[right[x]] + 1
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Selection

OS-SELECT(x, i) ⊳ith smallest element in the 
subtree rooted at x 

k ← size[left[x]] + 1 ⊳ k = rank(x)
if  i = k  then return x
if  i < k  

then return OS-SELECT( left[x], i )
else return OS-SELECT(right[x], i – k )

Implementation trick: Use a sentinel
(dummy record) for NIL such that size[NIL] = 0.

(OS-RANK is in the textbook.)
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Example
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OS-SELECT(root, 5)
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Running time = O(h) = O(log n) for red-black trees.
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Data structure maintenance
Q. Why not keep the ranks themselves 

in the nodes instead of subtree sizes?

A. They are hard to maintain when the 
red-black tree is modified.

Modifying operations: INSERT and DELETE.
Strategy: Update subtree sizes when 
inserting or deleting.

k ← size[left[x]] + 1 ⊳ k = rank(x)
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Example of insertion
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Handling rebalancing
Don’t forget that RB-INSERT and RB-DELETE may 
also need to modify the red-black tree in order to 
maintain balance.
• Recolorings: no effect on subtree sizes.
• Rotations: fix up subtree sizes in O(1) time.
Example:
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∴RB-INSERT and RB-DELETE still run in O(log n) time.
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Data-structure augmentation
Methodology: (e.g., order-statistics trees)
1. Choose an underlying data structure (red-black 

tree).
2. Determine additional information to be stored 

in the data structure (subtree sizes).
3. Verify that this information can be maintained 

for modifying operations (RB-INSERT, RB-
DELETE — don’t forget rotations).

4. Develop new dynamic-set operations that use 
the information (OS-SELECT and OS-RANK).

These steps are guidelines, not rigid rules.
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Interval trees
Goal: To maintain a dynamic set of intervals, 
such as time intervals.

low[i] = 7 10 = high[i]

i = [7, 10]

5
4 15 22

1711
8 18

19
23

Query: For a given query interval i, find an 
interval in the set that overlaps i.
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Following the methodology

1. Choose an underlying data structure.
• Red-black tree keyed on low (left) endpoint.

int
m

int
m

2. Determine additional information to be 
stored in the data structure.
• Store in each node x the interval int[x]

corresponding to the key, as well as the 
largest value m[x] of all right interval 
endpoints stored in the subtree rooted at x.
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Modifying operations
3. Verify that this information can be maintained 

for modifying operations.
• INSERT: Fix m’s on the way down.
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• Rotations — Fixup = O(1) time per rotation:

Total INSERT time = O(log n); DELETE similar.
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New operations
4. Develop new dynamic-set operations that use 

the information.
INTERVAL-SEARCH(i)

x ← root
while x ≠ NIL and (low[i] > high[int[x]] 

or low[int[x]] > high[i])
do ⊳ i and int[x] don’t overlap

if left[x] ≠ NIL and low[i] ≤ m[left[x]]
then x ← left[x]
else x ← right[x]

return x
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Example 1: INTERVAL-SEARCH([14,16])
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[14,16] and [17,19] don’t overlap
14 ≤ 18 ⇒ x ← left[x]
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Example 1: INTERVAL-SEARCH([14,16])
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Example 1: INTERVAL-SEARCH([14,16])
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Example 2: INTERVAL-SEARCH([12,14])
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[12,14] and [17,19] don’t overlap
12 ≤ 18 ⇒ x ← left[x]
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Example 2: INTERVAL-SEARCH([12,14])

17,19
23

17,19
23

5,11
18

5,11
18

4,8
8

4,8
8

15,18
18

15,18
18

7,10
10

7,10
10

22,23
23

22,23
23

x

[12,14] and [5,11] don’t overlap
12 > 8 ⇒ x ← right[x]

12 14



212/16/10 CS 5633 Analysis of Algorithms

Example 2: INTERVAL-SEARCH([12,14])
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Example 2: INTERVAL-SEARCH([12,14])
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x = NIL ⇒ no interval that 
overlaps [12,14] exists
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Analysis
Time = O(h) = O(log n), since INTERVAL-
SEARCH does constant work at each level as it 
follows a simple path down the tree.
List all overlapping intervals:
• Search, list, delete, repeat.
• Insert them all again at the end.

This is an output-sensitive bound.
Best algorithm to date: O(k + log n).

Time = O(k log n), where k is the total number 
of overlapping intervals.
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Correctness
Theorem.  Let L be the set of intervals in the 
left subtree of node x, and let R be the set of 
intervals in x’s right subtree.
• If the search goes right, then

{ i ′ ∈ L : i ′ overlaps i } = ∅.
• If the search goes left, then

{i ′ ∈ L : i ′ overlaps i } = ∅
⇒ {i ′ ∈ R : i ′ overlaps i } = ∅.

In other words, it’s always safe to take only 1
of the 2 children: we’ll either find something, 
or nothing was to be found.
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Correctness proof
Proof. Suppose first that the search goes right.  
• If left[x] = NIL, then we’re done, since L = ∅. 
• Otherwise, the code dictates that we must have 

low[i] > m[left[x]].  The value m[left[x]]
corresponds to the right endpoint of some 
interval j ∈ L, and no other interval in L can 
have a larger right endpoint than high( j).

Λ
high( j) = m[left[x]]

i
low(i)

• Therefore, {i ′ ∈ L : i ′ overlaps i } = ∅.
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Proof (continued)
Suppose that the search goes left, and assume that

{i ′ ∈ L : i ′ overlaps i } = ∅.
• Then, the code dictates that low[i] ≤ m[left[x]] = 

high[ j] for some j ∈ L.
• Since  j ∈ L, it does not overlap i, and hence 

high[i] < low[ j].
• But, the binary-search-tree property implies that 

for all i ′ ∈ R, we have low[ j] ≤ low[i ′].
• But then {i ′ ∈ R : i ′ overlaps i } = ∅.

Λ

i j
i ′
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Orthogonal range searching

Input: n points in d dimensions
• E.g., representing a database of n records

each with d numeric fields
Query: Axis-aligned box (in 2D, a rectangle)

• Report on the points inside the box: 
• Are there any points?
• How many are there?
• List the points.
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Orthogonal range searching

Input: n points in d dimensions
Query: Axis-aligned box (in 2D, a rectangle)

• Report on the points inside the box
Goal: Preprocess points into a data structure

to support fast queries
• Primary goal: Static data structure
• In 1D, we will also obtain a
dynamic data structure
supporting insert and delete
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1D range searching
In 1D, the query is an interval:

First solution:
• Sort the points and store them in an array

• Solve query by binary search on endpoints.
• Obtain a static structure that can list
k answers in a query in O(k + log n) time.

Goal: Obtain a dynamic structure that can list
k answers in a query in O(k + log n) time.
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1D range searching
In 1D, the query is an interval:

New solution that extends to higher dimensions:
• Balanced binary search tree

• New organization principle:
Store points in the leaves of the tree.

• Internal nodes store copies of the leaves
to satisfy binary search property:

• Node x stores in key[x] the maximum
key of any leaf in the left subtree of x.
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Example of a 1D range tree

11

66 88 1212 1414

1717

2626 3535 4141 4242

4343

5959 6161

key[x] is the maximum key of any leaf in the left subtree of x.
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Example of a 1D range tree

121211

66 88 1212 1414

1717

2626 3535 4141 4242

4343

5959 6161

66 2626 4141 5959

11 1414 3535 4343

424288

1717
xx

≤ x > x

key[x] is the maximum key of any leaf in the left subtree of x.
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1212

88 1212 1414

1717

2626 3535 4141

2626

1414

Example of a 1D range query

11

66 4242

4343

5959 6161

66 4141 5959

11

1212

88 1212 1414

1717

2626 3535 4141

2626

1414 3535 4343

424288

1717

RANGE-QUERY([7, 41])

xx

≤ x > x
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General 1D range query
root

split node
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Pseudocode, part 1:
Find the split node

1D-RANGE-QUERY(T, [x1, x2])
w ← root[T]
while w is not a leaf  and  (x2 ≤ key[w] or key[w] < x1)

do if x2 ≤ key[w]
then w ← left[w]
else  w ← right[w]

// w is now the split node
[traverse left and right from w and report relevant subtrees]
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Pseudocode, part 2: Traverse 
left and right from split node

1D-RANGE-QUERY(T, [x1, x2])
[find the split node]
// w is now the split node
if w is a leaf
then output the leaf w if x1 ≤ key[w] ≤ x2
else  v ← left[w] // Left traversal

while v is not a leaf
do if x1 ≤ key[v] 

then output the subtree rooted at right[v]
v ← left[v]

else  v ← right[v]
output the leaf v if x1 ≤ key[v] ≤ x2
[symmetrically for right traversal]

w
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Analysis of 1D-RANGE-QUERY

Query time: Answer to range query represented
by O(log n) subtrees found in O(log n) time.
Thus:

• Can test for points in interval in O(log n) time.
• Can report all k points in interval in 

O(k + log n) time.
• Can count points in interval in

O(log n) time
Space: O(n)
Preprocessing time: O(n log n)
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2D range trees
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Store a primary 1D range tree for all the points
based on x-coordinate.

2D range trees

Thus in O(log n) time we can find O(log n) subtrees
representing the points with proper x-coordinate.
How to restrict to points with proper y-coordinate?
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2D range trees
Idea: In primary 1D range tree of x-coordinate,
every node stores a secondary 1D range tree
based on y-coordinate for all points in the subtree
of the node.  Recursively search within each.
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2D range tree example

1/11/1 2/72/7 3/53/5 5/85/8 6/66/6 7/27/2
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22

Primary tree

Secondary trees
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Analysis of 2D range trees
Query time: In O(log2 n) = O((log n)2) time, we can
represent answer to range query by O(log2 n) subtrees.
Total cost for reporting k points: O(k + (log n)2).

Preprocessing time: O(n log n)

Space: The secondary trees at each level of the
primary tree together store a copy of the points.
Also, each point is present in each secondary
tree along the path from the leaf to the root.
Either way, we obtain that the space is O(n log n).
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d-dimensional range trees

Query time: O(k + logd n) to report k points.
Space: O(n logd – 1 n)
Preprocessing time: O(n logd – 1 n)

Each node of the secondary 
y-structure stores a tertiary 
z-structure representing the points in the subtree 
rooted at the node, etc. Save one log factor using 

fractional cascading
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Search in Subsets
Given: Two sorted arrays A1 and A, with A1⊆A

A query interval [l,r]
Task: Report all elements e in A1 and A with l ≤ e ≤ r
Idea: Add pointers from A to A1:

→ For each a∈A add a pointer to the 
smallest element b∈ A1 with b≥a

Query: Find l∈A, follow pointer to A1. Both in A and A1
sequentially output all elements in [l,r].

3  10  19  23  30  37  59  62  80  90

10  19  30  62 80

Query:
[15,40]

A

A1

Runtime: O((log n + k) + (1 + k)) = O(log n + k))
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Search in Subsets (cont.)
Given: Three sorted arrays A1, A2, and A, 

with A1 ⊆A and A2⊆A

3  10  19  23  30  37  59  62  80  90

10  19  30  62 80

Query:
[15,40]

A

A1
3  23  37  62 90A2

Runtime: O((log n + k) + (1+k) + (1+k)) = O(log n + k))

Range trees:

X
Y1 Y2

Y1∪Y2
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Fractional Cascading: 
Layered Range Tree

Replace 2D range tree 
with a layered range 
tree, using sorted 
arrays and pointers 
instead of the 
secondary range trees.

Preprocessing: 
O(n log n)

Query: 
O(log n + k)
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d-dimensional range trees

Query time: O(k + logd-1 n) to report k points,
uses fractional cascading in the 
last dimension

Space: O(n logd – 1 n)
Preprocessing time: O(n logd – 1 n)

Best data structure to date:
Query time: O(k + logd – 1 n) to report k points.
Space: O(n (log n / log log n)d – 1)
Preprocessing time: O(n logd – 1 n)


