

CS 5633 -- Spring 2010

Augmenting Data Structures

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Dictionaries and Dynamic Sets

Abstract Data Type (ADT) Dictionary :

Insert (x, D):inserts x into DD is aDelete (x, D):deletes x from Ddynamic setFind (x, D):finds x in D

Popular implementation uses any balanced search tree (not necessarily binary). This way each operation takes $O(\log n)$ time.

Dynamic order statistics

OS-SELECT(i, S): returns the *i*th smallest element in the dynamic set *S*.

OS-RANK(x, S): returns the rank of $x \in S$ in the sorted order of S's elements.

IDEA: Use a red-black tree for the set *S*, but keep subtree sizes in the nodes.

Notation for nodes:

size[x] = size[left[x]] + size[right[x]] + 1

Selection

Implementation trick: Use a *sentinel* (dummy record) for NIL such that *size*[NIL] = 0.

OS-SELECT(x, i) $\triangleleft i$ th smallest element in the subtree rooted at x

 $k \leftarrow size[left[x]] + 1 \quad \triangleleft k = rank(x)$ if i = k then return xif i < k

then return OS-SELECT(left[x], i) else return OS-SELECT(right[x], i-k)

(OS-RANK is in the textbook.)

Example

OS-SELECT(*root*, 5)

OS-SELECT(x, i) > ith smallest element in the subtree rooted at x $k \leftarrow size[left[x]] + 1 > k = rank(x)$ if i = k then return xif i < kthen return OS-SELECT(left[x], i)else return OS-SELECT(right[x], i-k)

Running time = $O(h) = O(\log n)$ for red-black trees.

Data structure maintenance

- **Q.** Why not keep the ranks themselves in the nodes instead of subtree sizes?
- A. They are hard to maintain when the red-black tree is modified. $k \leftarrow size[left[x]] + 1 \qquad \triangleleft k = rank(x)$

Modifying operations: INSERT and DELETE. **Strategy:** Update subtree sizes when inserting or deleting.

Example of insertion

Handling rebalancing

Don't forget that RB-INSERT and RB-DELETE may also need to modify the red-black tree in order to maintain balance.

- *Recolorings*: no effect on subtree sizes.
- *Rotations*: fix up subtree sizes in O(1) time.

 \therefore RB-INSERT and RB-DELETE still run in $O(\log n)$ time.

Data-structure augmentation

Methodology: (e.g., order-statistics trees)

- 1. Choose an underlying data structure (*red-black tree*).
- 2. Determine additional information to be stored in the data structure (*subtree sizes*).
- Verify that this information can be maintained for modifying operations (RB-INSERT, RB-DELETE — *don't forget rotations*).
- 4. Develop new dynamic-set operations that use the information (OS-SELECT *and* OS-RANK).

These steps are guidelines, not rigid rules.

Interval trees

Goal: To maintain a dynamic set of intervals, such as time intervals.

Following the methodology

- Choose an underlying data structure.
 Red-black tree keyed on low (left) endpoint.
- 2. Determine additional information to be stored in the data structure.
 - Store in each node x the interval int[x] corresponding to the key, as well as the largest value m[x] of all right interval endpoints stored in the subtree rooted at x.

Modifying operations

3. Verify that this information can be maintained for modifying operations.

- INSERT: Fix *m*'s on the way down.
- Rotations Fixup = O(1) time per rotation:

Total INSERT time = $O(\log n)$; DELETE similar.

New operations

4. Develop new dynamic-set operations that use the information.

INTERVAL-SEARCH(*i*) $x \leftarrow root$ while $x \neq \text{NIL}$ and (low[i] > high[int[x]])or low[int[x]] > high[i]) **do** $\triangleleft i$ and *int*[x] don't overlap if $left[x] \neq NIL$ and $low[i] \leq m[left[x]]$ then $x \leftarrow left[x]$ else $x \leftarrow right[x]$ return x

Time = $O(h) = O(\log n)$, since INTERVAL-SEARCH does constant work at each level as it follows a simple path down the tree.

- List *all* overlapping intervals:
- Search, list, delete, repeat.
- Insert them all again at the end. Time = $O(k \log n)$, where k is the total number of overlapping intervals.
- This is an *output-sensitive* bound.
- Best algorithm to date: $O(k + \log n)$.

Correctness

- **Theorem.** Let L be the set of intervals in the left subtree of node x, and let R be the set of intervals in x's right subtree.
- If the search goes right, then

 $\{ i' \in L : i' \text{ overlaps } i \} = \emptyset.$

• If the search goes left, then

 $\{i' \in L : i' \text{ overlaps } i\} = \emptyset$ $\Rightarrow \{i' \in R : i' \text{ overlaps } i\} = \emptyset.$

In other words, it's always safe to take only 1 of the 2 children: we'll either find something, or nothing was to be found.

Correctness proof

Proof. Suppose first that the search goes right.

- If left[x] = NIL, then we're done, since $L = \emptyset$.
- Otherwise, the code dictates that we must have low[i] > m[left[x]]. The value m[left[x]] corresponds to the right endpoint of some interval j ∈ L, and no other interval in L can have a larger right endpoint than high(j).

$$\Lambda \underbrace{i}_{high(j) = m[left[x]]} \underbrace{i}_{low(i)}$$
• Therefore, $\{i' \in L : i' \text{ overlaps } i\} = \emptyset$.

Proof (continued)

Suppose that the search goes left, and assume that $\{i' \in L : i' \text{ overlaps } i\} = \emptyset$.

- Then, the code dictates that $low[i] \le m[left[x]] = high[j]$ for some $j \in L$.
- Since *j* ∈ *L*, it does not overlap *i*, and hence *high*[*i*] < *low*[*j*].
- But, the binary-search-tree property implies that for all *i*' ∈ *R*, we have *low*[*j*] ≤ *low*[*i*'].
- But then $\{i' \in R : i' \text{ overlaps } i\} = \emptyset$.

26

Orthogonal range searching

Input: *n* points in *d* dimensions

• E.g., representing a database of *n* records each with *d* numeric fields

Query: Axis-aligned *box* (in 2D, a rectangle)

- Report on the points inside the box:
 - Are there any points?
 - How many are there?
 - List the points.

Orthogonal range searching

Input: *n* points in *d* dimensions

- Query: Axis-aligned *box* (in 2D, a rectangle)
 - Report on the points inside the box
- **Goal:** Preprocess points into a data structure to support fast queries
 - Primary goal: *Static data structure*
 - In 1D, we will also obtain a dynamic data structure supporting insert and delete

1D range searching

In 1D, the query is an interval:

First solution:

- Sort the points and store them in an array
 - Solve query by binary search on endpoints.
 - Obtain a static structure that can list
 k answers in a query in O(*k* + log *n*) time.

Goal: Obtain a dynamic structure that can list *k* answers in a query in $O(k + \log n)$ time.

1D range searching

In 1D, the query is an interval:

New solution that extends to higher dimensions:

- Balanced binary search tree
 - New organization principle: Store points in the *leaves* of the tree.
 - Internal nodes store copies of the leaves to satisfy binary search property:
 - Node *x* stores in *key*[*x*] the maximum key of any leaf in the left subtree of *x*.

key[x] is the maximum key of any leaf in the left subtree of x. 2/16/10 CS 5633 Analysis of Algorithms 31

 $\frac{key[x]}{2^{16/10}}$ is the maximum key of any leaf in the left subtree of x. CS 5633 Analysis of Algorithms 32

Pseudocode, part 1: Find the split node

1D-RANGE-QUERY(T, $[x_1, x_2]$) $w \leftarrow \operatorname{root}[T]$ while w is not a leaf and $(x_2 \le key[w] \text{ or } key[w] < x_1)$ do if $x_2 \leq key[w]$ then $w \leftarrow left[w]$ else $w \leftarrow right[w]$ // w is now the split node [traverse left and right from w and report relevant subtrees]

Pseudocode, part 2: Traverse left and right from split node

1D-RANGE-QUERY(T, $[x_1, x_2]$) [find the split node] // w is now the split node if w is a leaf **then** output the leaf w if $x_1 \le key[w] \le x_2$ // Left traversal else $v \leftarrow left[w]$ while v is not a leaf do if $x_1 \leq key[v]$ then output the subtree rooted at *right*[v] $v \leftarrow left[v]$ else $v \leftarrow right[v]$ output the leaf v if $x_1 \leq key[v] \leq x_2$ [symmetrically for right traversal]

Analysis of 1D-RANGE-QUERY

Query time: Answer to range query represented by $O(\log n)$ subtrees found in $O(\log n)$ time. Thus:

- Can test for points in interval in $O(\log n)$ time.
- Can report all *k* points in interval in $O(k + \log n)$ time.
- Can count points in interval in $O(\log n)$ time
- **Space:** O(n)**Preprocessing time:** $O(n \log n)$

2D range trees

2D range trees

Store a *primary* 1D range tree for all the points based on *x*-coordinate.

Thus in $O(\log n)$ time we can find $O(\log n)$ subtrees representing the points with proper *x*-coordinate. How to restrict to points with proper *y*-coordinate?

2D range trees

Idea: In primary 1D range tree of *x*-coordinate, <u>every</u> node stores a *secondary* 1D range tree based on *y*-coordinate for all points in the subtree of the node. Recursively search within each.

2D range tree example

Secondary trees

Analysis of 2D range trees

Query time: In $O(\log^2 n) = O((\log n)^2)$ time, we can represent answer to range query by $O(\log^2 n)$ subtrees. Total cost for reporting *k* points: $O(k + (\log n)^2)$.

Space: The secondary trees at each level of the primary tree together store a copy of the points. Also, each point is present in each secondary tree along the path from the leaf to the root. Either way, we obtain that the space is $O(n \log n)$.

Preprocessing time: O(n log n)

ALGORITHMS *d*-dimensional range trees Each node of the secondary *y*-structure stores a tertiary *z*-structure representing the points in the subtree rooted at the node, etc. Save one log factor using fractional cascading Query time: $O(k + \log^d n)$ to report k points. **Space:** $O(n \log^{d-1} n)$ **Preprocessing time:** $O(n \log^{d-1} n)$

Search in Subsets

- **Given:** Two sorted arrays A_1 and A, with $A_1 \subseteq A$ A query interval [l,r]
- **Task:** Report all elements e in A_1 and A with $l \le e \le r$
- Idea: Add pointers from *A* to A_1 : \rightarrow For each $a \in A$ add a pointer to the smallest element $b \in A_1$ with $b \ge a$

Query: Find $l \in A$, follow pointer to A_1 . Both in A and A_1 sequentially output all elements in [l,r].

Runtime: $O((\log n + k) + (1 + k)) = O(\log n + k))$

2/16/10

Search in Subsets (cont.)

Given: Three sorted arrays A_1, A_2 , and A, with $A_1 \subseteq A$ and $A_2 \subseteq A$

X

Runtime: $O((\log n + k) + (1+k) + (1+k)) = O(\log n + k))$

Range trees:

CS 5633 Analysis of Algorithms

 $Y_1 \cup Y_2$

Fractional Cascading: Layered Range Tree

Replace 2D range tree with a layered range tree, using sorted arrays and pointers instead of the secondary range trees.

Preprocessing: $O(n \log n)$ Query: $O(\log n + k)$

d-dimensional range trees

Query time: $O(k + \log^{d-1} n)$ to report k points, uses fractional cascading in the last dimension Space: $O(n \log^{d-1} n)$ Preprocessing time: $O(n \log^{d-1} n)$

Best data structure to date: Query time: $O(k + \log^{d-1} n)$ to report k points. Space: $O(n (\log n / \log \log n)^{d-1})$ Preprocessing time: $O(n \log^{d-1} n)$