CS 5633 -- Spring 2010

Augmenting Data Structures
 Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Dictionaries and Dynamic Sets

Abstract Data Type (ADT) Dictionary :
Insert (x, D) : inserts x into D
D is a
Delete (x, D) : deletes x from D dynamic set Find (x, D): finds x in D

Popular implementation uses any balanced search tree (not necessarily binary). This way each operation takes $O(\log n)$ time.

Dynamic order statistics

$\operatorname{OS-Select}(i, S):$ returns the i th smallest element in the dynamic set S.
$\operatorname{OS}-\operatorname{Rank}(x, S)$: returns the rank of $x \in S$ in the sorted order of S 's elements.

Idea: Use a red-black tree for the set S, but keep subtree sizes in the nodes.

Notation for nodes:

Example of an OS-tree

$$
\operatorname{size}[x]=\operatorname{size}[\operatorname{left}[x]]+\operatorname{size}[\operatorname{right}[x]]+1
$$

Selection

Implementation trick: Use a sentinel
(dummy record) for NIL such that size $[\mathrm{NIL}]=0$.
$\operatorname{OS}-\operatorname{Select}(x, i) \quad \triangleleft i$ th smallest element in the subtree rooted at x

$$
k \leftarrow \operatorname{size}[\operatorname{left}[x]]+1 \quad \triangleleft k=\operatorname{rank}(x)
$$

if $i=k$ then return x
if $i<k$
then return OS-SELECT (left $[x], i$)
else return OS-SELECT $(\operatorname{right}[x], i-k)$
(OS-Rank is in the textbook.)

Example

$\operatorname{OS-Select}(x, i) \triangleright i$ th smallest element in the subtree rooted at x

```
k}\leftarrow\operatorname{size[left[x]] + 1 }\trianglerightk=\operatorname{rank}(x
```

if $i=k$ then return x
if $i<k$
then return OS-SeLEct $($ left $[x], i)$ else return OS-SELECT (right $[x], i-k)$
OS-SELECT(root, 5)
$k \leftarrow \operatorname{size}[$ left $[x]]+1 \quad \triangleright k=\operatorname{rank}(x)$
if $i=k$ then return x
if $i<k$

Running time $=O(h)=O(\log n)$ for red-black trees.

Data structure maintenance

Q. Why not keep the ranks themselves in the nodes instead of subtree sizes?
A. They are hard to maintain when the red-black tree is modified. $k \leftarrow \operatorname{size}[$ lef $t[x]]+1 \quad \triangleleft k=\operatorname{rank}(x)$

Modifying operations: Insert and Delete. Strategy: Update subtree sizes when inserting or deleting.

ALGORITHMS
Example of insertion

Handling rebalancing

Don't forget that RB-Insert and RB-Delete may also need to modify the red-black tree in order to maintain balance.

- Recolorings: no effect on subtree sizes.
- Rotations: fix up subtree sizes in $O(1)$ time. Example:

\therefore RB-Insert and RB-Delete still run in $O(\log n)$ time.

Data-structure augmentation

Methodology: (e.g., order-statistics trees)

1. Choose an underlying data structure (red-black tree).
2. Determine additional information to be stored in the data structure (subtree sizes).
3. Verify that this information can be maintained for modifying operations (RB-INSERT, RBDELETE - don't forget rotations).
4. Develop new dynamic-set operations that use the information (OS-Select and OS-Rank).
These steps are guidelines, not rigid rules.

Interval trees

Goal: To maintain a dynamic set of intervals, such as time intervals.

Following the methodology

1. Choose an underlying data structure.

- Red-black tree keyed on low (left) endpoint.

2. Determine additional information to be stored in the data structure.

- Store in each node x the interval int $[x]$ corresponding to the key, as well as the largest value $m[x]$ of all right interval endpoints stored in the subtree rooted at x.

Example interval tree

Modifying operations

3. Verify that this information can be maintained for modifying operations.

- Insert: Fix m 's on the way down.
- Rotations - Fixup $=O(1)$ time per rotation:

Total Insert time $=O(\log n)$; Delete similar.

New operations

4. Develop new dynamic-set operations that use the information.

Interval-Search (i)
$x \leftarrow$ root
while $x \neq$ NIL and $(\operatorname{low}[i]>\operatorname{high}[\operatorname{int}[x]]$ or low $[\operatorname{int}[x]]>\operatorname{high}[i])$
do $\triangleleft i$ and $\operatorname{int}[x]$ don't overlap if $\operatorname{left}[x] \neq$ NIL and low $[i] \leq m[\operatorname{left}[x]]$
then $x \leftarrow \operatorname{left}[x]$
else $x \leftarrow \operatorname{right}[x]$
return x

Example 1: Interval-Search([14,16])

Example 1: Interval-Search([14,16])

Example 1: Interval-Search([14,16])

Example 2: Interval-Search([12,14])

Example 2: Interval-Search([12,14])

Example 2: Interval-Search([12,14])

Example 2: Interval-Search([12,14])

Analysis

Time $=O(h)=O(\log n)$, since INTERVAL-
SEARCH does constant work at each level as it follows a simple path down the tree.

List all overlapping intervals:

- Search, list, delete, repeat.
- Insert them all again at the end.

Time $=O(k \log n)$, where k is the total number of overlapping intervals.
This is an output-sensitive bound.
Best algorithm to date: $O(k+\log n)$.

Correctness

Theorem. Let L be the set of intervals in the left subtree of node x, and let R be the set of intervals in x 's right subtree.

- If the search goes right, then

$$
\left\{i^{\prime} \in L: i^{\prime} \text { overlaps } i\right\}=\varnothing .
$$

- If the search goes left, then

$$
\begin{aligned}
& \left\{i^{\prime} \in L: i^{\prime} \text { overlaps } i\right\}=\varnothing \\
& \Rightarrow\left\{i^{\prime} \in R: i^{\prime} \text { overlaps } i\right\}=\varnothing .
\end{aligned}
$$

In other words, it's always safe to take only 1 of the 2 children: we'll either find something, or nothing was to be found.

Correctness proof

Proof. Suppose first that the search goes right.

- If left $[x]=$ NIL, then we're done, since $L=\varnothing$.
- Otherwise, the code dictates that we must have low $[i]>m[$ left $[x]]$. The value $m[$ left $[x]]$ corresponds to the right endpoint of some interval $j \in L$, and no other interval in L can have a larger right endpoint than $\operatorname{high}(j)$.

- Therefore, $\left\{i^{\prime} \in L: i^{\prime}\right.$ overlaps $\left.i\right\}=\varnothing$.

Proof (continued)

Suppose that the search goes left, and assume that $\left\{i^{\prime} \in L: i^{\prime}\right.$ overlaps $\left.i\right\}=\varnothing$.

- Then, the code dictates that low $[i] \leq m[l e f t[x]]=$ high $[j]$ for some $j \in L$.
- Since $j \in L$, it does not overlap i, and hence high $[i]$ < low $[j]$.
- But, the binary-search-tree property implies that for all $i^{\prime} \in R$, we have low $[j] \leq \operatorname{low}\left[i^{\prime}\right]$.
- But then $\left\{i^{\prime} \in R: i^{\prime}\right.$ overlaps $\left.i\right\}=\varnothing$.

Orthogonal range searching

Input: n points in d dimensions

- E.g., representing a database of n records each with d numeric fields

Query: Axis-aligned box (in 2D, a rectangle)

- Report on the points inside the box:
- Are there any points?
- How many are there?
- List the points.

Orthogonal range searching

Input: n points in d dimensions
Query: Axis-aligned box (in 2D, a rectangle)

- Report on the points inside the box

Goal: Preprocess points into a data structure to support fast queries

- Primary goal: Static data structure
- In 1D, we will also obtain a dynamic data structure supporting insert and delete

1D range searching

In 1 D , the query is an interval:

First solution:

- Sort the points and store them in an array
- Solve query by binary search on endpoints.
- Obtain a static structure that can list k answers in a query in $\mathrm{O}(k+\log n)$ time.

Goal: Obtain a dynamic structure that can list k answers in a query in $\mathrm{O}(k+\log n)$ time.

1D range searching

In 1D, the query is an interval:

New solution that extends to higher dimensions:

- Balanced binary search tree
- New organization principle: Store points in the leaves of the tree.
- Internal nodes store copies of the leaves to satisfy binary search property:
- Node x stores in $k e y[x]$ the maximum key of any leaf in the left subtree of x.

Example of a 1D range tree

$k e y[x]$ is the maximum key of any leaf in the left subtree of x.

Example of a 1D range tree

$k e y[x]$ is the maximum key of any leaf in the left subtree of x.

Example of a 1D range query

ALGORITHMS
General 1D range query

 \title{
Pseudocode, part 1:
 \title{
Pseudocode, part 1: Find the split node
} Find the split node
}

1D-RANGE-QUERY $\left(T,\left[x_{1}, x_{2}\right]\right)$
$w \leftarrow \operatorname{root}[T]$
while w is not a leaf and $\left(x_{2} \leq k e y[w]\right.$ or $\left.k e y[w]<x_{1}\right)$ do if $x_{2} \leq k e y[w]$
then $w \leftarrow \operatorname{left}[w]$
else $w \leftarrow \operatorname{right}[w]$
$/ / w$ is now the split node
[traverse left and right from w and report relevant subtrees]

Pseudocode, part 2: Traverse left and right from split node

1D-RANGE-QUERY $\left(T,\left[x_{1}, x_{2}\right]\right)$
[find the split node]
$/ / w$ is now the split node
if w is a leaf
then output the leaf w if $x_{1} \leq k e y[w] \leq x_{2}$
else $v \leftarrow l e f t[w]$
// Left traversal
while v is not a leaf
do if $x_{1} \leq k e y[v]$
then output the subtree rooted at $\operatorname{right}[v]$ $v \leftarrow \operatorname{left}[v]$
else $v \leftarrow \operatorname{right}[v]$
output the leaf v if $x_{1} \leq k e y[v] \leq x_{2}$ [symmetrically for right traversal]

Analysis of 1D-Range-Query

Query time: Answer to range query represented by $\mathrm{O}(\log n)$ subtrees found in $\mathrm{O}(\log n)$ time.
Thus:

- Can test for points in interval in $\mathrm{O}(\log n)$ time.
- Can report all k points in interval in $\mathrm{O}(\mathrm{k}+\log n)$ time.
- Can count points in interval in O($\log n$) time

Space: O(n)

Preprocessing time: $\mathrm{O}(n \log n)$

2D range trees

Store a primary 1D range tree for all the points based on x-coordinate.
Thus in $\mathrm{O}(\log n)$ time we can find $\mathrm{O}(\log n)$ subtrees representing the points with proper x-coordinate. How to restrict to points with proper y-coordinate?

2D range trees

Idea: In primary 1 D range tree of x-coordinate, every node stores a secondary 1D range tree based on y-coordinate for all points in the subtree of the node. Recursively search within each.

2D range tree example

Secondary trees

Analysis of 2D range trees

Query time: In $\mathrm{O}\left(\log ^{2} \mathrm{n}\right)=\mathrm{O}\left((\log n)^{2}\right)$ time, we can represent answer to range query by $\mathrm{O}\left(\log ^{2} n\right)$ subtrees.
Total cost for reporting k points: $\mathrm{O}\left(k+(\log n)^{2}\right)$.
Space: The secondary trees at each level of the primary tree together store a copy of the points. Also, each point is present in each secondary tree along the path from the leaf to the root. Either way, we obtain that the space is $\mathrm{O}(n \log n)$. Preprocessing time: $\mathrm{O}(n \log n)$

d-dimensional range trees

Each node of the secondary y-structure stores a tertiary
z-structure representing the points in the subtree
rooted at the node, etc. Save one log factor using fractional cascading

Query time: $\mathrm{O}\left(k+\log ^{d} n\right)$ to report k points.
Space: $O\left(n \log ^{d-1} n\right)$
Preprocessing time: $\mathrm{O}\left(n \log ^{d-1} n\right)$

Search in Subsets

Given: Two sorted arrays A_{1} and A, with $A_{1} \subseteq A$ A query interval $[l, r]$
Task: Report all elements e in A_{1} and A with $l \leq e \leq r$ Idea: Add pointers from A to A_{1} :
\rightarrow For each $a \in A$ add a pointer to the smallest element $b \in A_{1}$ with $b \geq a$
Query: Find $l \in A$, follow pointer to A_{1}. Both in A and A_{1} sequentially output all elements in $[l, r]$.

Runtime: $\mathrm{O}((\log n+k)+(1+k))=\mathrm{O}(\log n+k))$

Search in Subsets (cont.)

Given: Three sorted arrays A_{1}, A_{2}, and A, with $A_{1} \subseteq A$ and $A_{2} \subseteq A$

Runtime: $\mathrm{O}((\log n+k)+(1+k)+(1+k))=\mathrm{O}(\log n+k))$
Range trees:

Fractional Cascading: Layered Range Tree

Replace 2D range tree with a layered range tree, using sorted arrays and pointers instead of the secondary range trees.

Preprocessing:

$$
\mathrm{O}(n \log n)
$$

Query:

d-dimensional range trees

Query time: $\mathrm{O}\left(k+\log ^{d-1} n\right)$ to report k points, uses fractional cascading in the last dimension
Space: $\mathrm{O}\left(n \log ^{d-1} n\right)$
Preprocessing time: $\mathrm{O}\left(n \log ^{d-1} n\right)$

Best data structure to date:
Query time: $\mathrm{O}\left(k+\log ^{d-1} n\right)$ to report k points. Space: $\mathrm{O}\left(n(\log n / \log \log n)^{d-1}\right)$ Preprocessing time: $\mathrm{O}\left(n \log ^{d-1} n\right)$

