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How fast can we sort?
All the sorting algorithms we have seen so far 
are comparison sorts: only use comparisons to 
determine the relative order of elements.
• E.g., insertion sort, merge sort, quicksort, 

heapsort.
The best worst-case running time that we’ve 
seen for comparison sorting is O(n log n) .

Is O(n log n) the best we can do?

Decision trees can help us answer this question. 
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Decision-tree example
(Insertion sort)

a1:a2
a1:a2

a2:a3
a2:a3

a1a2a3
a1a2a3 a1:a3

a1:a3

a1a3a2
a1a3a2 a3a1a2

a3a1a2

a1:a3
a1:a3

a2a1a3
a2a1a3 a2:a3

a2:a3

a2a3a1
a2a3a1 a3a2a1

a3a2a1

Each internal node is labeled ai:aj for i, j ∈ {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai < aj.
•The right subtree shows subsequent comparisons if ai ≥ aj.

Sort 〈a1, a2, …, an〉 <
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Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:
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Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:

9 ≥ 4

2/2/10 CS 5633 Analysis of Algorithms 6

Decision-tree example
(Insertion sort)

a1:a2
a1:a2

a2:a3
a2:a3

a1a2a3
a1a2a3 a1:a3

a1:a3

a1a3a2
a1a3a2 a3a1a2

a3a1a2

a1:a3
a1:a3

a2a1a3
a2a1a3 a2:a3

a2:a3

a2a3a1
a2a3a1 a3a2a1

a3a2a1

Each internal node is labeled ai:aj for i, j ∈ {1, 2,…, n}.
•The left subtree shows subsequent comparisons if ai < aj.
•The right subtree shows subsequent comparisons if ai ≥ aj.

<

<

<

<

<

≥

≥

≥ ≥

9 ≥ 6

Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:
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Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:
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Decision-tree example
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Each leaf contains a permutation 〈π(1), π(2),…, π(n)〉 to 
indicate that the ordering aπ(1) ≤ aπ(2) ≤ L ≤ aπ(n) has been 
established.

4 < 6 ≤ 9

Sort 〈a1, a2, a3〉
= 〈 9, 4, 6 〉:
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Decision-tree model
A decision tree models the execution of any 
comparison sorting algorithm:

• One tree per input size n. 
• The tree contains all possible comparisons (= if-branches)  

that could be executed for any input of size n.
• The tree contains all comparisons along all possible 

instruction traces (= control flows) for all inputs of size n.
• For one input, only one path to a leaf is executed.
• Running time = length of the path taken.
• Worst-case running time = height of tree.
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Lower bound for 
comparison sorting

Theorem. Any decision tree that can sort n 
elements must have height Ω(n log n) .
Proof. The tree must contain ≥ n! leaves, since 
there are n! possible permutations.  A height-h
binary tree has ≤ 2h leaves.  Thus, n! ≤ 2h .

∴ h ≥ log(n!) (log is mono. increasing)
≥ log ((n/e)n) (Stirling’s formula)
= n log n – n log e

⇒ h ∈ Ω(n log n) .
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Lower bound for comparison 
sorting

Corollary. Heapsort and merge sort are 
asymptotically optimal comparison sorting 
algorithms.
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Sorting in linear time

Counting sort: No comparisons between elements.
• Input: A[1 . . n], where A[ j]∈{1, 2, …, k} .
• Output: B[1 . . n], sorted.
• Auxiliary storage: C[1 . . k] .
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Counting sort

for i ← 1 to k
do C[i] ← 0

for j ← 1 to n
do C[A[ j]] ← C[A[ j]] + 1 ⊳ C[i] = |{key = i}|

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

for j ← n downto 1
do B[C[A[ j]]] ← A[ j]

C[A[ j]] ← C[A[ j]] – 1

1.

2.

3.

4.
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Counting-sort example

A: 44 11 33 44 33

B:

1 2 3 4 5

C:
1 2 3 4
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Loop 1

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 00 00 00 00
1 2 3 4

for i ← 1 to k
do C[i] ← 0

1.
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Loop 2

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 00 00 00 11
1 2 3 4

for j ← 1 to n
do C[A[ j]] ← C[A[ j]] + 1 ⊳ C[i] = |{key = i}|

2.
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Loop 2

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 00 11
1 2 3 4

for j ← 1 to n
do C[A[ j]] ← C[A[ j]] + 1 ⊳ C[i] = |{key = i}|

2.
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Loop 2

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 11 11
1 2 3 4

for j ← 1 to n
do C[A[ j]] ← C[A[ j]] + 1 ⊳ C[i] = |{key = i}|

2.
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Loop 2

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 11 22
1 2 3 4

for j ← 1 to n
do C[A[ j]] ← C[A[ j]] + 1 ⊳ C[i] = |{key = i}|

2.
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Loop 2

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 22 22
1 2 3 4

for j ← 1 to n
do C[A[ j]] ← C[A[ j]] + 1 ⊳ C[i] = |{key = i}|

2.
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Loop 3

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 22 22
1 2 3 4

C': 11 11 22 22

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

3.
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Loop 3

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 22 22
1 2 3 4

C': 11 11 33 22

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

3.
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Loop 3

A: 44 11 33 44 33

B:

1 2 3 4 5

C: 11 00 22 22
1 2 3 4

C': 11 11 33 55

for i ← 2 to k
do C[i] ← C[i] + C[i–1] ⊳ C[i] = |{key ≤ i}|

3.
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Loop 4

A: 44 11 33 44 33

B: 33

1 2 3 4 5

C: 11 11 33 55
1 2 3 4

C': 11 11 33 55

for j ← n downto 1
do B[C[A[ j]]] ← A[ j]

C[A[ j]] ← C[A[ j]] – 1

4.
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Loop 4

A: 44 11 33 44 33

B: 33

1 2 3 4 5

C: 11 11 33 55
1 2 3 4

C': 11 11 22 55

for j ← n downto 1
do B[C[A[ j]]] ← A[ j]

C[A[ j]] ← C[A[ j]] – 1

4.
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Loop 4

A: 44 11 33 44 33

B: 33 44

1 2 3 4 5

C: 11 11 22 55
1 2 3 4

C': 11 11 22 55

for j ← n downto 1
do B[C[A[ j]]] ← A[ j]

C[A[ j]] ← C[A[ j]] – 1

4.
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Loop 4

A: 44 11 33 44 33

B: 33 44

1 2 3 4 5

C: 11 11 22 55
1 2 3 4

C': 11 11 22 44

for j ← n downto 1
do B[C[A[ j]]] ← A[ j]

C[A[ j]] ← C[A[ j]] – 1

4.
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Loop 4

A: 44 11 33 44 33

B: 33 33 44

1 2 3 4 5

C: 11 11 22 44
1 2 3 4

C': 11 11 22 44

for j ← n downto 1
do B[C[A[ j]]] ← A[ j]

C[A[ j]] ← C[A[ j]] – 1

4.
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Loop 4

A: 44 11 33 44 33

B: 33 33 44

1 2 3 4 5

C: 11 11 22 44
1 2 3 4

C': 11 11 11 44

for j ← n downto 1
do B[C[A[ j]]] ← A[ j]

C[A[ j]] ← C[A[ j]] – 1

4.
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Loop 4

A: 44 11 33 44 33

B: 11 33 33 44

1 2 3 4 5

C: 11 11 11 44
1 2 3 4

C': 11 11 11 44

for j ← n downto 1
do B[C[A[ j]]] ← A[ j]

C[A[ j]] ← C[A[ j]] – 1

4.
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Loop 4

A: 44 11 33 44 33

B: 11 33 33 44

1 2 3 4 5

C: 11 11 11 44
1 2 3 4

C': 00 11 11 44

for j ← n downto 1
do B[C[A[ j]]] ← A[ j]

C[A[ j]] ← C[A[ j]] – 1

4.
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Loop 4

A: 44 11 33 44 33

B: 11 33 33 44 44

1 2 3 4 5

C: 00 11 11 44
1 2 3 4

C': 00 11 11 44

for j ← n downto 1
do B[C[A[ j]]] ← A[ j]

C[A[ j]] ← C[A[ j]] – 1

4.
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Loop 4

A: 44 11 33 44 33

B: 11 33 33 44 44

1 2 3 4 5

C: 00 11 11 44
1 2 3 4

C': 00 11 11 33

for j ← n downto 1
do B[C[A[ j]]] ← A[ j]

C[A[ j]] ← C[A[ j]] – 1

4.
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Analysis
for i ← 1 to k

do C[i] ← 0

Θ(n)

Θ(k)

Θ(n)

Θ(k)

for j ← 1 to n
do C[A[ j]] ← C[A[ j]] + 1

for i ← 2 to k
do C[i] ← C[i] + C[i–1]

for j ← n downto 1
do B[C[A[ j]]] ← A[ j]

C[A[ j]] ← C[A[ j]] – 1
Θ(n + k)

1.

2.

3.

4.
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Running time

If k = O(n), then counting sort takes Θ(n) time.
• But, sorting takes Ω(n log n) time!
• Where’s the fallacy?

Answer:
• Comparison sorting takes Ω(n log n) time.
• Counting sort is not a comparison sort.
• In fact, not a single comparison between 

elements occurs!
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Stable sorting

Counting sort is a stable sort: it preserves 
the input order among equal elements.

A: 44 11 33 44 33

B: 11 33 33 44 44

Exercise: What other sorts have this property?
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Radix sort

• Origin: Herman Hollerith’s card-sorting 
machine for the 1890 U.S. Census.  (See 
Appendix     .)

• Digit-by-digit sort.
• Hollerith’s original (bad) idea: sort on 

most-significant digit first.
• Good idea: Sort on least-significant digit 

first with an auxiliary stable sorting 
algorithm (like counting sort).
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Operation of radix sort

3 2 9
4 5 7
6 5 7
8 3 9
4 3 6
7 2 0
3 5 5

7 2 0
3 5 5
4 3 6
4 5 7
6 5 7
3 2 9
8 3 9

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9
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• Sort on digit t

Correctness of radix sort
Induction on digit position 
• Assume that the numbers 

are sorted by their low-order 
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9
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• Sort on digit t

Correctness of radix sort
Induction on digit position 
• Assume that the numbers 

are sorted by their low-order 
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

Two numbers that differ in 
digit t are correctly sorted.
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• Sort on digit t

Correctness of radix sort
Induction on digit position 
• Assume that the numbers 

are sorted by their low-order 
t – 1 digits.

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

Two numbers that differ in 
digit t are correctly sorted.
Two numbers equal in digit t
are put in the same order as 
the input ⇒ correct order.
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Analysis of radix sort
• Sort n computer words of b bits each.
• View each word as having b/r base-2r digits.
Example: 32-bit word (b=32)

r = 1:  32 base-2 digits
⇒ b/r = 32 passes of counting sort on base-2 digits

8 8 8 8
r = 8: 32/8 base-28 digits
⇒ b/r = 4 passes of counting sort on base-28 digits 

16 16
r = 16: 32/16 base-216 digits
⇒ b/r = 2 passes of counting sort on base-216 digits 
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Analysis of radix sort

• Sort n computer words of b bits each.
• View each word as having b/r base-2r digits.
• Assume counting sort is the auxiliary stable sort.
• Make b/r passes of counting sort on base-2r digits

How many passes should we make?
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Analysis (continued)
Recall: Counting sort takes Θ(n + k) time to 
sort n numbers in the range from 0 to k – 1.
• If each b-bit word is broken into r-bit pieces, 
each pass of counting sort takes Θ(n + 2r) time.
• Since there are b/r passes, we have

( )




 +Θ= rn

r
bbnT 2),( .

• Choose r to minimize T(n, b):
Increasing r means fewer passes, but as r >> log n, 
the time grows exponentially.
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Choosing r
( )





 +Θ= rn

r
bbnT 2),(

Minimize T(n, b) by differentiating and setting to 0.
Or, just observe that we don’t want 2r >  n, and 
there’s no harm asymptotically in choosing r as 
large as possible subject to this constraint.

>

Choosing r = log n implies T(n, b) = Θ(bn/log n) .
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Radix Sort with optimized r

• Example:
For numbers in the range from 0 to nd – 1, we 
have b = d log n ⇒ radix sort runs in Θ(d n) time.

• Notice that counting sort runs in O(n+k) time, 
where all numbers are in the range 1 through k.

• Assume counting sort is the auxiliary stable sort.
• Sort n computer words of b bits each.

The runtime of radix sort is: T(n, b) = Θ(bn/log n) .
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Conclusions

Example (32-bit numbers):
• At most 3 passes when sorting ≥ 2000 numbers.
• Merge sort and quicksort do at least log 2000

= 11 passes.

In practice, radix sort is fast for large inputs, as 
well as simple to code and maintain.

Downside: Unlike quicksort, radix sort displays 
little locality of reference, and thus a well-tuned 
quicksort fares better on modern processors, 
which feature steep memory hierarchies.
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Appendix: Punched-card 
technology

• Herman Hollerith (1860-1929)
• Punched cards
• Hollerith’s tabulating system
• Operation of the sorter
• Origin of radix sort
• “Modern” IBM card

Return to last 
slide viewed.
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Herman Hollerith
(1860-1929)

• The 1880 U.S. Census took almost
10 years to process.

• While a lecturer at MIT, Hollerith 
prototyped punched-card technology.

• His machines, including a “card sorter,” allowed 
the 1890 census total to be reported in 6 weeks.

• He founded the Tabulating Machine Company in 
1911, which merged with other companies in 1924 
to form International Business Machines.
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Punched cards
• Punched card = data record.
• Hole = value. 
• Algorithm = machine + human operator.

Replica of punch 
card from the 
1900 U.S. census.  
[Howells 2000]
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Hollerith’s 
tabulating 
system
•Pantograph card 
punch

•Hand-press reader
•Dial counters
•Sorting box

Figure from 
[Howells 2000].
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Operation of the sorter
• An operator inserts a card into 

the press.
• Pins on the press reach through 

the punched holes to make 
electrical contact with  mercury-
filled cups beneath the card.

• Whenever a particular digit 
value is punched, the lid of the 
corresponding sorting bin lifts.

• The operator deposits the card 
into the bin and closes the lid.

• When all cards have been processed, the front panel is opened, and 
the cards are collected in order, yielding one pass of a stable sort.

Hollerith Tabulator, Pantograph, Press, and Sorter
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Origin of radix sort

Hollerith’s original 1889 patent alludes to a most-
significant-digit-first radix sort:

“The most complicated combinations can readily be 
counted with comparatively few counters or relays by first 
assorting the cards according to the first items entering 
into the combinations, then reassorting each group 
according to the second item entering into the combination, 
and so on, and finally counting on a few counters the last 
item of the combination for each group of cards.”

Least-significant-digit-first radix sort seems to be 
a folk invention originated by machine operators.

2/2/10 CS 5633 Analysis of Algorithms 54

“Modern” IBM card

So, that’s why text windows have 80 columns!

Produced by 
the WWW 
Virtual Punch-
Card Server.

• One character per column.


