

2/2/10

How fast can we sort?

All the sorting algorithms we have seen so far are *comparison sorts*: only use comparisons to determine the relative order of elements.

• E.g., insertion sort, merge sort, quicksort, heapsort.

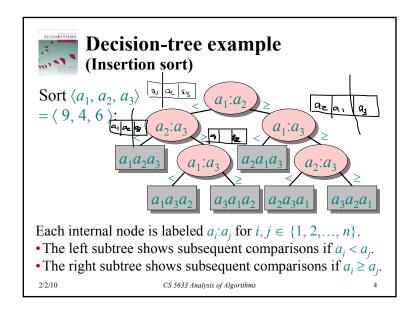
The best worst-case running time that we've seen for comparison sorting is $O(n \log n)$.

Is O(n log n) the best we can do?

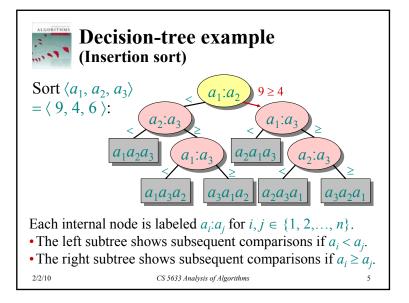
Decision trees can help us answer this question. CS 5633 Analysis of Algorithms

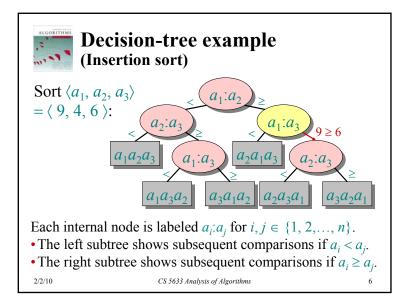
Decision-tree example (Insertion sort) Sort $\langle a_1, a_2, \ldots, a_n \rangle$ $a_1:a_1$ $a_{2}:a_{3}$ $a_1:a_1$ $a_1 a_2 a_3$ $a_2 a_1 a_2$ $a_2 a_2 a_3$ $a_2 a_2 a_3$ Each internal node is labeled $a_i:a_i$ for $i, j \in \{1, 2, ..., n\}$.

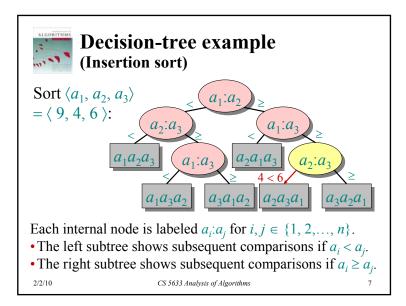
• The left subtree shows subsequent comparisons if $a_i < a_i$. • The right subtree shows subsequent comparisons if $a_i \ge a_i$. 2/2/10 CS 5633 Analysis of Algorithms

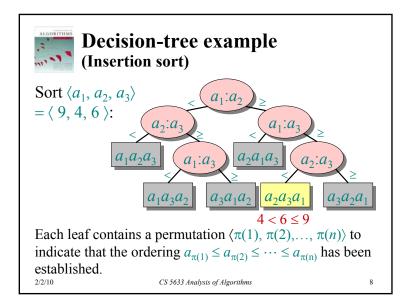




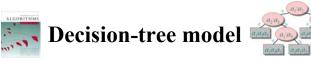








2



A decision tree models the execution of any comparison sorting algorithm:

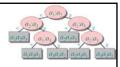
- One tree per input size *n*.
- The tree contains **all** possible comparisons (= if-branches) that could be executed for **any** input of size *n*.
- The tree contains all comparisons along all possible instruction traces (= control flows) for all inputs of size *n*.
- For one input, only one path to a leaf is executed.
- Running time = length of the path taken.
- Worst-case running time = height of tree.

2/2/10

CS 5633 Analysis of Algorithms

9

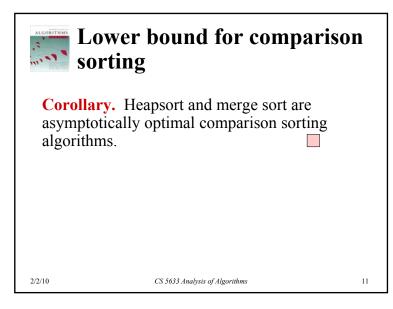
Lower bound for comparison sorting

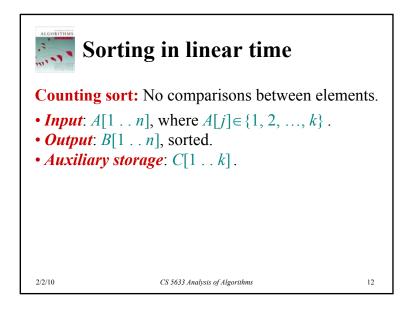


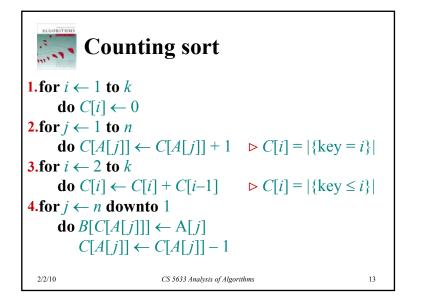
Theorem. Any decision tree that can sort *n* elements must have height $\Omega(n \log n)$.

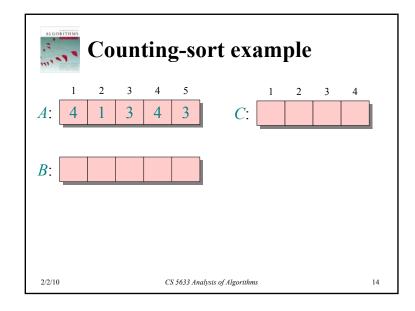
Proof. The tree must contain $\ge n!$ leaves, since there are n! possible permutations. A height-h binary tree has $\le 2^h$ leaves. Thus, $n! \le 2^h$.

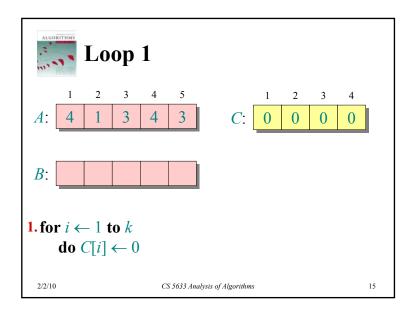
$\therefore h \ge \log(n!) \\ \ge \log((n/e)^n)$	(log is mono. increasing) (Stirling's formula)
$= n \log n - n \log n$ $\Rightarrow h \in \Omega(n \log n)$	
	Analysis of Algorithms 10

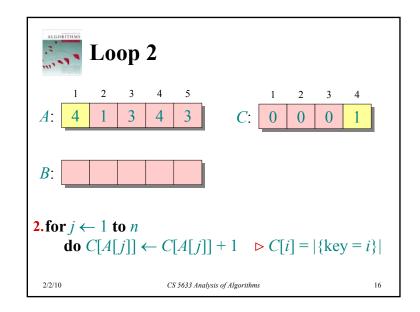


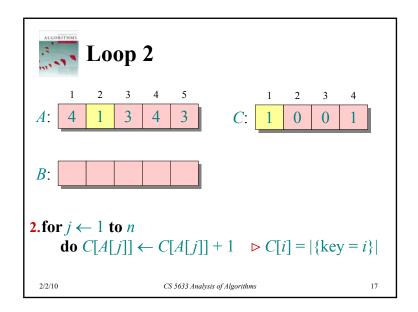


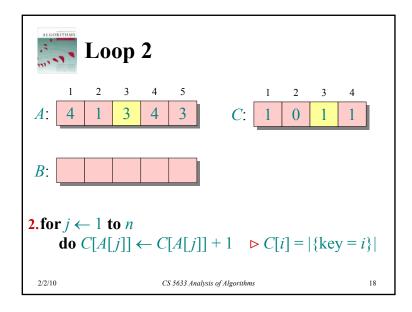


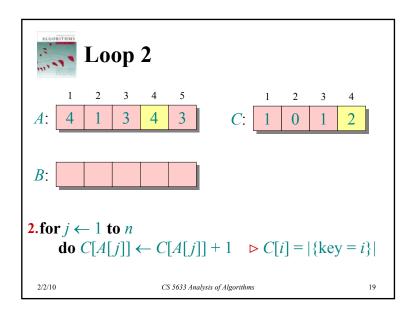


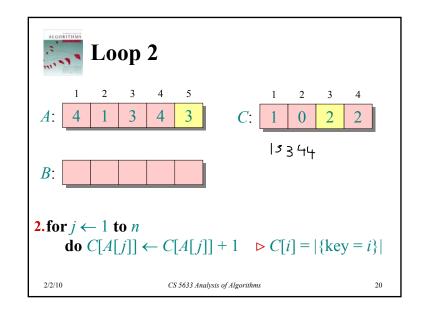


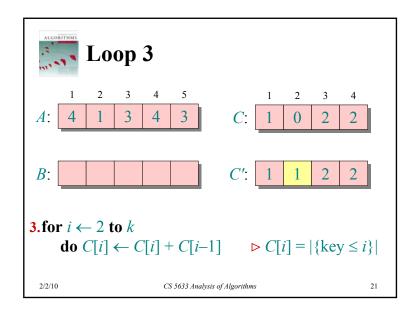


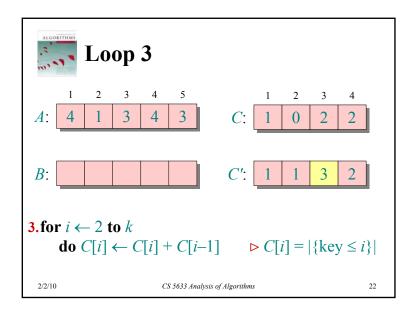


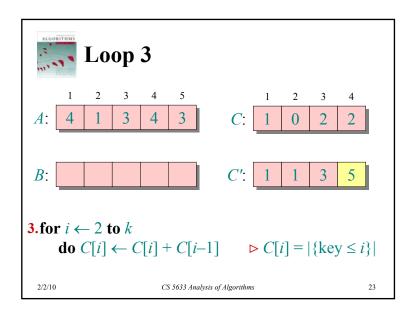


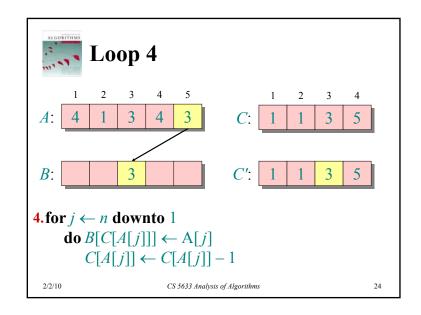


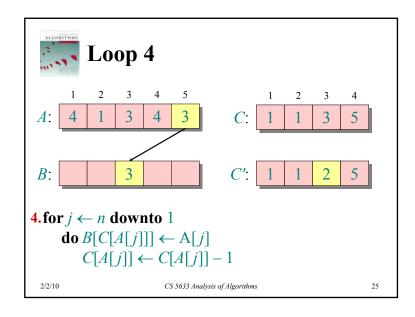


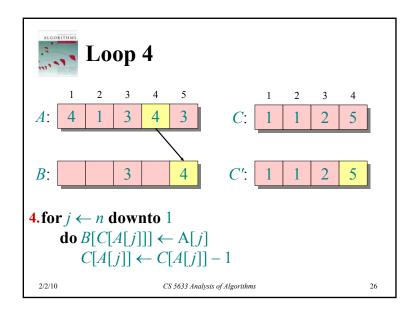


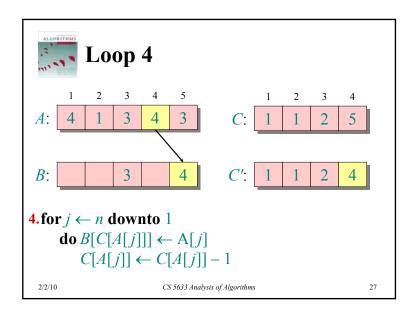


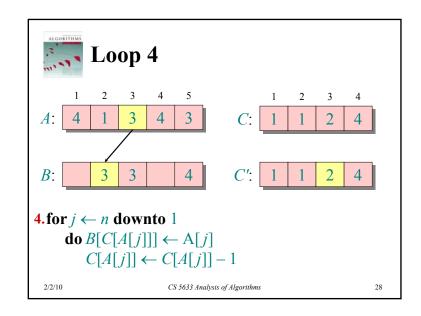


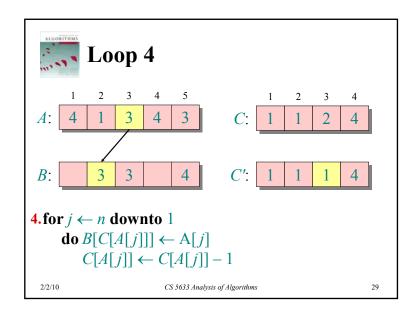


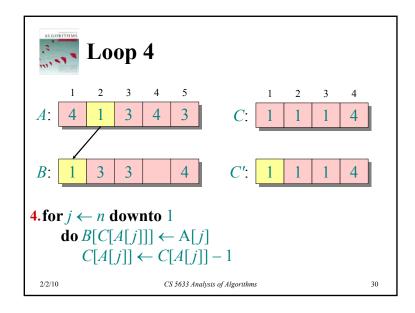


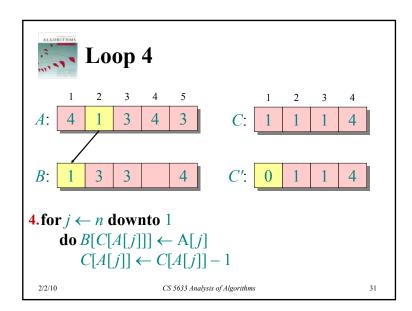


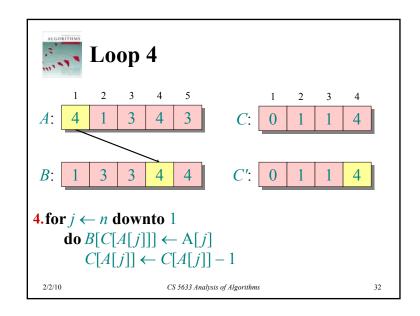


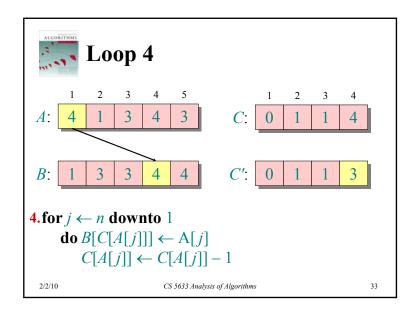


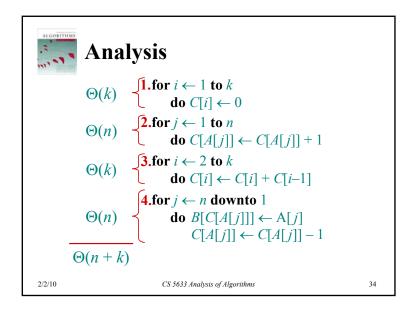


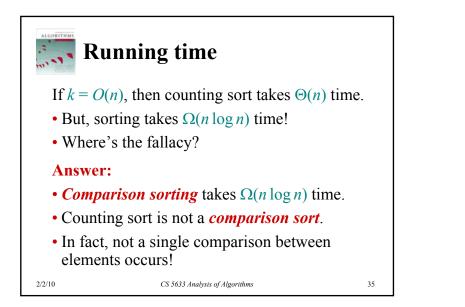


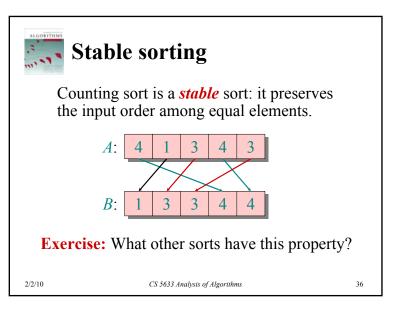


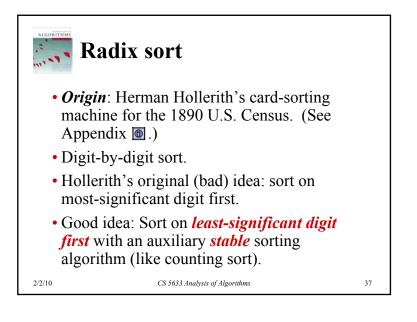


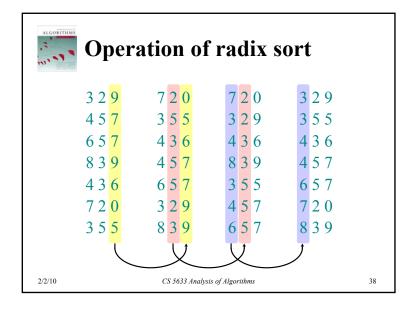


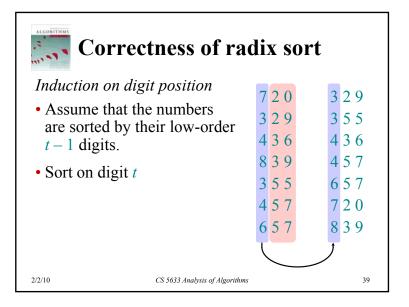


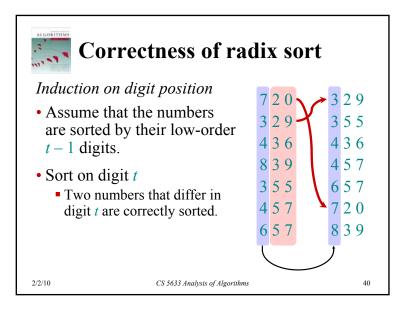




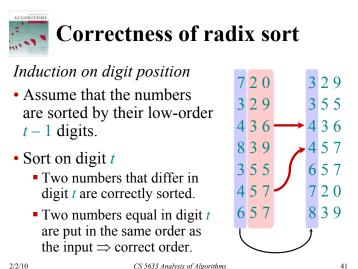


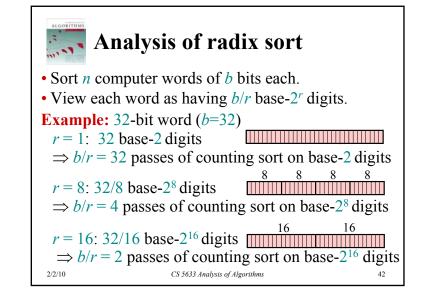


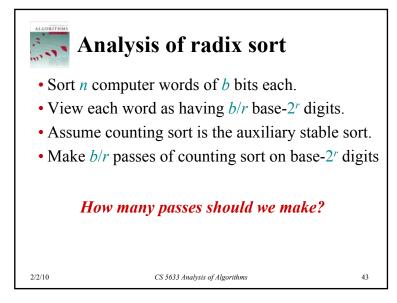


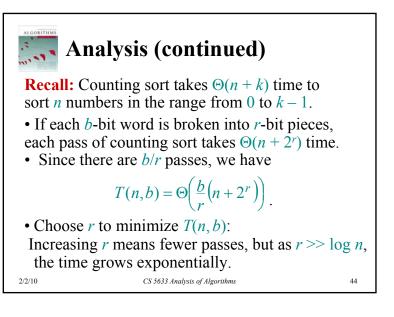












$T(n,b) = \Theta\left(\frac{b}{r}\left(n+2^r\right)\right)$

Minimize T(n, b) by differentiating and setting to 0.

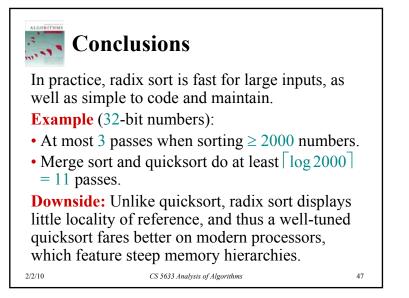
Or, just observe that we don't want $2^r \gg n$, and there's no harm asymptotically in choosing *r* as large as possible subject to this constraint.

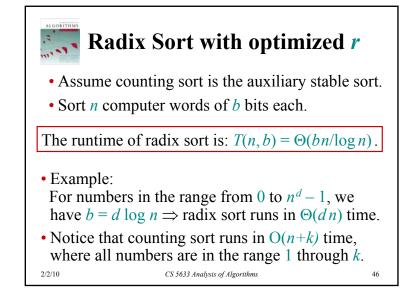
Choosing $r = \log n$ implies $T(n, b) = \Theta(bn/\log n)$.

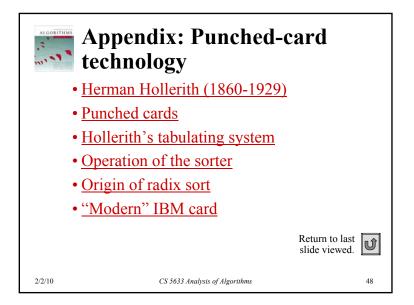
2/2/10

CS 5633 Analysis of Algorithms

45







5 6

10 years to process.

Herman Hollerith (1860-1929)

49

• While a lecturer at MIT, Hollerith prototyped punched-card technology.

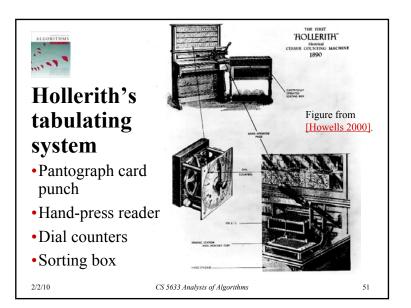
• The 1880 U.S. Census took almost

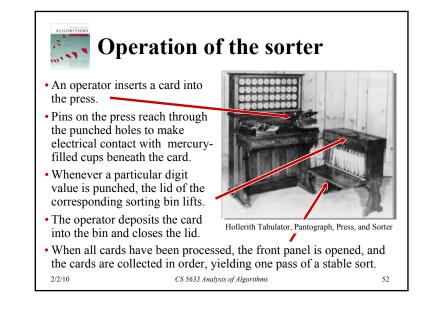
- His machines, including a "card sorter," allowed the 1890 census total to be reported in 6 weeks.
- He founded the Tabulating Machine Company in 1911, which merged with other companies in 1924 to form International Business Machines.

```
2/2/10
```

CS 5633 Analysis of Algorithms







· · · ·

Origin of radix sort	
Hollerith's original 1889 patent alludes to a most- significant-digit-first radix sort:	
"The most complicated combinations can readily be counted with comparatively few counters or relays by first assorting the cards according to the first items entering into the combinations, then reassorting each group according to the second item entering into the combination, and so on, and finally counting on a few counters the last item of the combination for each group of cards."	
Least-significant-digit-first radix sort seems to be a folk invention originated by machine operators.	

CS 5633 Analysis of Algorithms

53

