CS 5633 Analysis of Algorithms - Spring 10

9. Homework

Due $\mathbf{4 / 2 0 / 1 0}$ before class

1. Floyd-Warshall in less space (4 points)

Show how Floyd-Warshall's algorithm can be implemented to use only $\Theta\left(n^{2}\right)$ space (see problem 25.2-4 on page 634 / 699 in the book).
2. Negative-weight cycle (5 points)

Given a directed weighted connected graph $G=(V, E)$ with real edge weights (i.e., negative edge weights are allowed). Give an algorithm (in words is enough, but if you need to you can write pseudo-code) that detects AND prints out a negative-weight cycle if G contains a negative-weight cycle. What is the runtime of your algorithm?

3. Floyd-Warshall (4 points)

During the Floyd-Warshall all-pairs shortest paths algorithm, the shortest paths can be stored in a predecessor matrix. This is similar to storing a predecessor array for Dijkstra's algorithm, just that there is such an array for every vertex. (Page 632 / 695 in the textbook covers this topic, however it is possible to express the formula in a simpler way.)
(a) (2 points) Modify Floyd-Warshall's algorithm to include the computation of the predecessor matrix.
(b) (2 points) Write a method to use the predecessor matrix to print a shortest path between two vertices i and j.

4. Transitivity (3 points)

Show the transitivity property of the polynomial-time reduction " \leq " (fact 3 on slide 17):
Let $\Pi, \Pi^{\prime}, \Pi^{\prime \prime}$ be three decision problems. If $\Pi \leq \Pi^{\prime}$ and $\Pi^{\prime} \leq \Pi^{\prime \prime}$ then $\Pi \leq \Pi^{\prime \prime}$.

5. To be or not to be... ... in NP (5 points)

Which of the problems below are in NP and which are not? Justify your answers.
(a) Given an unsorted array A of n numbers, and a number k. Does A contain the number k ?
(b) Given an unsorted array A of n numbers. What is the minimum of the numbers stored in A ?
(c) Given an undirected graph G. Is G a tree?
(d) Given a connected directed graph $G=(V, E)$ and a number $k>0$. Is G k-colorable? (A graph is k-colorable if there exists an assignment of at most k colors to vertices, one color per vertex, such that no two vertices that share the same edge have the same color.)
(e) Given n numbers. Can these numbers be partitioned into two (disjoint) sets A, B such that the sum of the numbers in A equals the sum of the numbers in B ?

