CS 5633 Analysis of Algorithms – Spring 10

4/13/10

9. Homework

Due 4/20/10 before class

1. Floyd-Warshall in less space (4 points)

Show how Floyd-Warshall's algorithm can be implemented to use only $\Theta(n^2)$ space (see problem 25.2-4 on page 634 / 699 in the book).

2. Negative-weight cycle (5 points)

Given a directed weighted connected graph G = (V, E) with **real** edge weights (i.e., **negative** edge weights are allowed). Give an algorithm (in words is enough, but if you need to you can write pseudo-code) that detects **AND prints** out a negative-weight cycle if G contains a negative-weight cycle. What is the runtime of your algorithm?

3. Floyd-Warshall (4 points)

During the Floyd-Warshall all-pairs shortest paths algorithm, the shortest paths can be stored in a predecessor matrix. This is similar to storing a predecessor array for Dijkstra's algorithm, just that there is such an array for every vertex. (Page 632 / 695 in the textbook covers this topic, however it is possible to express the formula in a simpler way.)

- (a) (2 points) Modify Floyd-Warshall's algorithm to include the computation of the predecessor matrix.
- (b) (2 points) Write a method to use the predecessor matrix to print a shortest path between two vertices i and j.

4. Transitivity (3 points)

Show the transitivity property of the polynomial-time reduction " \leq " (fact 3 on slide 17):

Let Π, Π', Π'' be three decision problems. If $\Pi \leq \Pi'$ and $\Pi' \leq \Pi''$ then $\Pi \leq \Pi''$.

FLIP over to back page \implies

5. To be or not to be... in NP (5 points)

Which of the problems below are in NP and which are not? Justify your answers.

- (a) Given an unsorted array A of n numbers, and a number k. Does A contain the number k?
- (b) Given an unsorted array A of n numbers. What is the minimum of the numbers stored in A?
- (c) Given an undirected graph G. Is G a tree?
- (d) Given a connected directed graph G = (V, E) and a number k > 0. Is G k-colorable? (A graph is k-colorable if there exists an assignment of at most k colors to vertices, one color per vertex, such that no two vertices that share the same edge have the same color.)
- (e) Given n numbers. Can these numbers be partitioned into two (disjoint) sets A, B such that the sum of the numbers in A equals the sum of the numbers in B?