
1

CS 5633 Analysis of Algorithms 13/24/09

CS 5633 -- Spring 2009

Union-Find Data Structures
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

CS 5633 Analysis of Algorithms 23/24/09

Disjoint-set data structure
(Union-Find)

Problem:
• Maintain a dynamic collection of pairwise-disjoint

sets S = {S1, S2, …, Sr}.
• Each set Si has one element distinguished as the

representative element, rep[Si].
• Must support 3 operations:

• MAKE-SET(x): adds new set {x} to S
with rep[{x}] = x (for any x ∉ Si for all i)

• UNION(x, y): replaces sets Sx, Sy with Sx ∪ Sy in S
(for any x, y in distinct sets Sx, Sy)

• FIND-SET(x): returns representative rep[Sx]
of set Sx containing element x

CS 5633 Analysis of Algorithms 33/24/09

Union-Find Example

MAKE-SET(2)

UNION(2, 4)
FIND-SET(4) = 4

S = {}
S = {{2}}

MAKE-SET(3) S = {{2}, {3}}
MAKE-SET(4) S = {{2}, {3}, {4}}

S = {{2, 4}, {3}}
FIND-SET(4) = 2
MAKE-SET(5) S = {{2, 4}, {3}, {5}}
UNION(4, 5) S = {{2, 4, 5}, {3}}

The representative
is underlined

CS 5633 Analysis of Algorithms 43/24/09

Application:
Dynamic connectivity

Suppose a graph is given to us incrementally by
• ADD-VERTEX(v)
• ADD-EDGE(u, v)

and we want to support connectivity queries:
• CONNECTED(u, v):
Are u and v in the same connected component?

For example, we want to maintain a spanning forest,
so we check whether each new edge connects a
previously disconnected pair of vertices.

2

CS 5633 Analysis of Algorithms 53/24/09

Application:
Dynamic connectivity

Sets of vertices represent connected components.
Suppose a graph is given to us incrementally by

• ADD-VERTEX(v) : MAKE-SET(v)
• ADD-EDGE(u, v) : if not CONNECTED(u, v)

then UNION(v, w)
and we want to support connectivity queries:

• CONNECTED(u, v): : FIND-SET(u) = FIND-SET(v)
Are u and v in the same connected component?

For example, we want to maintain a spanning forest,
so we check whether each new edge connects a
previously disconnected pair of vertices.

CS 5633 Analysis of Algorithms 63/24/09

Disjoint-set data structure
(Union-Find) II

• In all operations pointers to the elements x, y
in the data structure are given.

• Hence, we do not need to first search for the
element in the data structure.

• Let n denote the overall number of elements
(equivalently, the number of MAKE-SET

operations).

CS 5633 Analysis of Algorithms 73/24/09

Simple linked-list solution
Store each set Si = {x1, x2, …, xk} as an (unordered)
doubly linked list. Define representative element
rep[Si] to be the front of the list, x1.

…Si : x1 x2 xk

rep[Si]
• MAKE-SET(x) initializes x as a lone node.
• FIND-SET(x) walks left in the list containing

x until it reaches the front of the list.
• UNION(x, y) calls FIND-SET on y, finds the
last element of list x, and concatenates both
lists, leaving rep. as FIND-SET[x].

Θ(1)

Θ(n)
Θ(n)

CS 5633 Analysis of Algorithms 83/24/09

Simple balanced-tree solution
Store each set Si = {x1, x2, …, xk} as a balanced tree
(ignoring keys). Define representative element
rep[Si] to be the root of the tree.

x1

x4 x3

x2 x5

• MAKE-SET(x) initializes x
as a lone node.

• FIND-SET(x) walks up the tree
containing x until reaching root.

• UNION(x, y) calls FIND-SET on
y, finds a leaf of x and
concatenates both trees,
changing rep. of y

Si = {x1, x2, x3, x4, x5}

rep[Si]
Θ(1)

Θ(log n)

Θ(log n)

maintain how?

How?

3

CS 5633 Analysis of Algorithms 93/24/09

Plan of attack
•We will build a simple disjoint-union data structure
that, in an amortized sense, performs significantly
better than Θ(log n) per op., even better than
Θ(log log n), Θ(log log log n), ..., but not quite Θ(1).

•To reach this goal, we will introduce two key tricks.
Each trick converts a trivial Θ(n) solution into a
simple Θ(log n) amortized solution. Together, the
two tricks yield a much better solution.

• First trick arises in an augmented linked list.
Second trick arises in a tree structure.

CS 5633 Analysis of Algorithms 103/24/09

Augmented linked-list solution

…Si : x1 x2 xk

rep[Si]

rep

Store Si = {x1, x2, …, xk} as unordered doubly linked list.
Augmentation: Each element xj also stores pointer
rep[xj] to rep[Si] (which is the front of the list, x1).

• FIND-SET(x) returns rep[x].
• UNION(x, y) concatenates lists containing

x and y and updates the rep pointers for
all elements in the list containing y. – Θ(n)

– Θ(1)

CS 5633 Analysis of Algorithms 113/24/09

Example of
augmented linked-list solution

Sx : x1 x2

rep[Sx]

rep

Each element xj stores pointer rep[xj] to rep[Si].
UNION(x, y)

• concatenates the lists containing x and y, and
• updates the rep pointers for all elements in the

list containing y.

Sy : y1 y2 y3

rep[Sy]

rep

CS 5633 Analysis of Algorithms 123/24/09

Example of
augmented linked-list solution

Sx ∪ Sy :

x1 x2

rep[Sx]

rep

Each element xj stores pointer rep[xj] to rep[Si].
UNION(x, y)

• concatenates the lists containing x and y, and
• updates the rep pointers for all elements in the

list containing y.

y1 y2 y3

rep[Sy]

rep

4

CS 5633 Analysis of Algorithms 133/24/09

Example of
augmented linked-list solution

Sx ∪ Sy :

x1 x2

rep[Sx ∪ Sy]

Each element xj stores pointer rep[xj] to rep[Si].
UNION(x, y)

• concatenates the lists containing x and y, and
• updates the rep pointers for all elements in the

list containing y.

y1 y2 y3

rep

CS 5633 Analysis of Algorithms 143/24/09

Alternative concatenation

Sx : x1 x2

rep[Sy]

UNION(x, y) could instead
• concatenate the lists containing y and x, and
• update the rep pointers for all elements in the

list containing x.

y1 y2 y3

rep

rep[Sx]
rep

Sy :

CS 5633 Analysis of Algorithms 153/24/09

Alternative concatenation

Sx ∪ Sy :
x1 x2

rep[Sy]

UNION(x, y) could instead
• concatenate the lists containing y and x, and
• update the rep pointers for all elements in the

list containing x.

y1 y2 y3

rep[Sx]
rep

rep

CS 5633 Analysis of Algorithms 163/24/09

Alternative concatenation

Sx ∪ Sy :
x1 x2

UNION(x, y) could instead
• concatenate the lists containing y and x, and
• update the rep pointers for all elements in the

list containing x.

y1 y2 y3

rep

rep

rep[Sx ∪ Sy]

5

CS 5633 Analysis of Algorithms 173/24/09

Trick 1: Smaller into larger
(weighted-union heuristic)

To save work, concatenate the smaller list onto the
end of the larger list. Cost = Θ(length of smaller list).
Augment list to store its weight (# elements).

• Let n denote the overall number of elements
(equivalently, the number of MAKE-SET operations).

• Let m denote the total number of operations.
• Let f denote the number of FIND-SET operations.
Theorem: Cost of all UNION’s is O(n log n).
Corollary: Total cost is O(m + n log n).

CS 5633 Analysis of Algorithms 183/24/09

Analysis of Trick 1
(weighted-union heuristic)

Theorem: Total cost of UNION’s is O(n log n).
Proof. • Monitor an element x and set Sx containing it.
• After initial MAKE-SET(x), weight[Sx] = 1.
• Each time Sx is united with Sy:

• if weight[Sy] ≥ weight[Sx]:
– pay 1 to update rep[x], and
– weight[Sx] at least doubles (increases by weight[Sy]).

• if weight[Sy] < weight[Sx]:
– pay nothing, and
– weight[Sx] only increases.

Thus pay ≤ log n for x.

CS 5633 Analysis of Algorithms 193/24/09

Disjoint set forest:
Representing sets as trees

Store each set Si = {x1, x2, …, xk} as an unordered,
potentially unbalanced, not necessarily binary tree,
storing only parent pointers. rep[Si] is the tree root.

x1

x4 x3

x2 x5

Si = {x1, x2, x3, x4, x5 , x6}

rep[Si]

• MAKE-SET(x) initializes x
as a lone node.

• FIND-SET(x) walks up the
tree containing x until it
reaches the root.

• UNION(x, y) calls FIND-SET twice
and concatenates the trees
containing x and y…

– Θ(1)

– Θ(depth[x])

x6
– Θ(depth[x])

CS 5633 Analysis of Algorithms 203/24/09

Trick 1 adapted to trees
• UNION(x, y) can use a simple concatenation strategy:
Make root FIND-SET(y) a child of root FIND-SET(x).
⇒ FIND-SET(y) = FIND-SET(x).

y1

y4 y3

y2 y5

• Adapt Trick 1 to this context:
Union-by-weight:
Merge tree with smaller
weight into tree with
larger weight.

x1

x4 x3

x2 x5 x6

• Variant of Trick 1 (see book):
Union-by-rank:
rank of a tree = its height

6

CS 5633 Analysis of Algorithms 213/24/09

Trick 1 adapted to trees
(union-by-weight)

• Height of tree is logarithmic in weight, because:
• Induction on n
• Height of a tree T is determined by the two subtrees

T1, T2 that T has been united from.
• Inductively the heights of T1, T2 are the logs of their

weights.
• If T1 and T2 have different heights:

height(T) = max(height(T1), height(T2))
= max(log weight(T1), log weight(T2))
< log weight(T)

• If T1 and T2 have the same heights:
(Assume 2≤weight(T1)<weight(T2))
height(T) = height(T1) + 1 ≤ log (2*weight(T1))

≤ log weight(T)
• Thus the total cost of any m operations is O(m log n).

CS 5633 Analysis of Algorithms 223/24/09

Trick 2: Path compression
When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

y1

y4 y3

y2 y5

x1

x4 x3

x2 x5 x6

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(x)
is still Θ(depth[x]).

FIND-SET(y2)

CS 5633 Analysis of Algorithms 233/24/09

Trick 2: Path compression
When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

y1

y4 y3

y2 y5

x1

x4 x3

x2 x5 x6

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(x)
is still Θ(depth[x]).

FIND-SET(y2)

CS 5633 Analysis of Algorithms 243/24/09

Trick 2: Path compression
When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

y1

y4

y3y2

y5

x1

x4 x3

x2 x5 x6

FIND-SET(y2)

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(x)
is still Θ(depth[x]).

7

CS 5633 Analysis of Algorithms 253/24/09

Trick 2: Path compression

• Note that UNION(x,y) first calls FIND-SET(x) and
FIND-SET(y). Therefore path compression also
affects UNION operations.

CS 5633 Analysis of Algorithms 263/24/09

Analysis of Trick 2 alone
Theorem: Total cost of FIND-SET’s is O(m log n).
Proof: By amortization. Omitted.

CS 5633 Analysis of Algorithms 273/24/09

Ackermann’s function A, and
it’s “inverse” α

Define

≥
=+

= +
− .1 if

,0 if
)(

1
)()1(

1 k
k

jA
j

jA j
k

k

Define α(n) = min {k : Ak(1) ≥ n} ≤ 4 for practical n.

A0(j) = j + 1
A1(j) ~ 2 j
A2(j) ~ 2j 2j > 2j

A3(j) >
A4(j) is a lot bigger.

2
2

2

2 j

..
.

j

A0(1) = 2
A1(1) = 3
A2(1) = 7
A3(1) = 2047

A4(1) >

– iterate j+1 times

2
2

2

22047

..
.

2048 times

CS 5633 Analysis of Algorithms 283/24/09

Analysis of Tricks 1 + 2
for disjoint-set forests

Theorem: In general, total cost is O(m α(n)).
(long, tricky proof – see Section 21.4 of CLRS)

