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CS 5633 -- Spring 2009

Union-Find Data Structures
Carola Wenk

Slides courtesy of Charles Leiserson with small 
changes by Carola Wenk
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Disjoint-set data structure
(Union-Find)

Problem:
• Maintain a dynamic collection of pairwise-disjoint

sets S = {S1, S2, …, Sr}.
• Each set Si has one element distinguished as the

representative element, rep[Si].
• Must support 3 operations:

• MAKE-SET(x): adds new set {x} to S
with rep[{x}] = x (for any x ∉ Si for all i )

• UNION(x, y): replaces sets Sx, Sy with Sx ∪ Sy in S
(for any x, y in distinct sets Sx, Sy )

• FIND-SET(x): returns representative rep[Sx]
of set Sx containing element x
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Union-Find Example

MAKE-SET(2)

UNION(2, 4)
FIND-SET(4) = 4

S = {}
S = {{2}}

MAKE-SET(3) S = {{2}, {3}}
MAKE-SET(4) S = {{2}, {3}, {4}}

S = {{2, 4}, {3}}
FIND-SET(4) = 2
MAKE-SET(5) S = {{2, 4}, {3}, {5}}
UNION(4, 5) S = {{2, 4, 5}, {3}}

The representative 
is underlined
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Application:
Dynamic connectivity

Suppose a graph is given to us incrementally by
• ADD-VERTEX(v)
• ADD-EDGE(u, v)

and we want to support connectivity queries:
• CONNECTED(u, v):
Are u and v in the same connected component?

For example, we want to maintain a spanning forest,
so we check whether each new edge connects a
previously disconnected pair of vertices.
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Application:
Dynamic connectivity

Sets of vertices represent connected components.
Suppose a graph is given to us incrementally by

• ADD-VERTEX(v) : MAKE-SET(v)
• ADD-EDGE(u, v) : if not CONNECTED(u, v)

then UNION(v, w)
and we want to support connectivity queries:

• CONNECTED(u, v): : FIND-SET(u) = FIND-SET(v)
Are u and v in the same connected component?

For example, we want to maintain a spanning forest,
so we check whether each new edge connects a
previously disconnected pair of vertices.
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Disjoint-set data structure
(Union-Find) II

• In all operations pointers to the elements x, y
in the data structure are given.

• Hence, we do not need to first search for the 
element in the data structure. 

• Let n denote the overall number of elements
(equivalently, the number of MAKE-SET

operations).
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Simple linked-list solution
Store each set Si = {x1, x2, …, xk} as an (unordered)
doubly linked list.  Define representative element
rep[Si] to be the front of the list, x1.

…Si : x1 x2 xk

rep[Si]
• MAKE-SET(x) initializes x as a lone node.
• FIND-SET(x) walks left in the list containing 

x until it reaches the front of the list.
• UNION(x, y) calls FIND-SET on y, finds the
last element of list x, and concatenates both
lists, leaving rep. as FIND-SET[x].

Θ(1)

Θ(n)
Θ(n)
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Simple balanced-tree solution
Store each set Si = {x1, x2, …, xk} as a balanced tree
(ignoring keys).  Define representative element
rep[Si] to be the root of the tree.

x1

x4 x3

x2 x5

• MAKE-SET(x) initializes x
as a lone node.

• FIND-SET(x) walks up the tree 
containing x until reaching root.

• UNION(x, y) calls FIND-SET on
y, finds a leaf of x and 
concatenates both trees, 
changing rep. of y

Si = {x1, x2, x3, x4, x5}

rep[Si]
Θ(1)

Θ(log n)

Θ(log n)

maintain how?

How?
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Plan of attack
•We will build a simple disjoint-union data structure
that, in an amortized sense, performs significantly
better than Θ(log n) per op., even better than
Θ(log log n), Θ(log log log n), ..., but not quite Θ(1).

•To reach this goal, we will introduce two key tricks.
Each trick converts a trivial Θ(n) solution into a
simple Θ(log n) amortized solution.  Together, the
two tricks yield a much better solution.

• First trick arises in an augmented linked list.
Second trick arises in a tree structure.
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Augmented linked-list solution

…Si : x1 x2 xk

rep[Si]

rep

Store Si = {x1, x2, …, xk} as unordered doubly linked list.  
Augmentation: Each element xj also stores pointer 
rep[xj] to rep[Si] (which is the front of the list, x1).

• FIND-SET(x) returns rep[x].
• UNION(x, y) concatenates lists containing

x and y and updates the rep pointers for 
all elements in the list containing y. – Θ(n)

– Θ(1)
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Example of
augmented linked-list solution

Sx : x1 x2

rep[Sx]

rep

Each element xj stores pointer rep[xj] to rep[Si].
UNION(x, y)

• concatenates the lists containing x and y, and
• updates the rep pointers for all elements in the

list containing y.

Sy : y1 y2 y3

rep[Sy]

rep
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Example of
augmented linked-list solution

Sx ∪ Sy :

x1 x2

rep[Sx]

rep

Each element xj stores pointer rep[xj] to rep[Si].
UNION(x, y)

• concatenates the lists containing x and y, and
• updates the rep pointers for all elements in the

list containing y.

y1 y2 y3

rep[Sy]

rep
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Example of
augmented linked-list solution

Sx ∪ Sy :

x1 x2

rep[Sx ∪ Sy]

Each element xj stores pointer rep[xj] to rep[Si].
UNION(x, y)

• concatenates the lists containing x and y, and
• updates the rep pointers for all elements in the

list containing y.

y1 y2 y3

rep
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Alternative concatenation

Sx : x1 x2

rep[Sy]

UNION(x, y) could instead
• concatenate the lists containing y and x, and
• update the rep pointers for all elements in the

list containing x.

y1 y2 y3

rep

rep[Sx]
rep

Sy :
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Alternative concatenation

Sx ∪ Sy :
x1 x2

rep[Sy]

UNION(x, y) could instead
• concatenate the lists containing y and x, and
• update the rep pointers for all elements in the

list containing x.

y1 y2 y3

rep[Sx]
rep

rep
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Alternative concatenation

Sx ∪ Sy :
x1 x2

UNION(x, y) could instead
• concatenate the lists containing y and x, and
• update the rep pointers for all elements in the

list containing x.

y1 y2 y3

rep

rep

rep[Sx ∪ Sy]
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Trick 1: Smaller into larger
(weighted-union heuristic)

To save work, concatenate the smaller list onto the 
end of the larger list.  Cost = Θ(length of smaller list). 
Augment list to store its weight (# elements).

• Let n denote the overall number of elements
(equivalently, the number of MAKE-SET operations).

• Let m denote the total number of operations.
• Let f denote the number of FIND-SET operations.
Theorem: Cost of all UNION’s is O(n log n).
Corollary: Total cost is O(m + n log n).
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Analysis of Trick 1
(weighted-union heuristic)

Theorem: Total cost of UNION’s is O(n log n).
Proof. • Monitor an element x and set Sx containing it.
• After initial MAKE-SET(x), weight[Sx] = 1.  
• Each time Sx is united with Sy:

• if weight[Sy] ≥ weight[Sx]:
– pay 1 to update rep[x], and
– weight[Sx] at least doubles (increases by weight[Sy]).

• if weight[Sy] < weight[Sx]:
– pay nothing, and
– weight[Sx] only increases.  

Thus pay ≤ log n for x.
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Disjoint set forest: 
Representing sets as trees

Store each set Si = {x1, x2, …, xk} as an unordered,
potentially unbalanced, not necessarily binary tree,
storing only parent pointers. rep[Si] is the tree root.

x1

x4 x3

x2 x5

Si = {x1, x2, x3, x4, x5 , x6}

rep[Si]

• MAKE-SET(x) initializes x
as a lone node.

• FIND-SET(x) walks up the
tree containing x until it
reaches the root.

• UNION(x, y) calls FIND-SET twice
and concatenates the trees 
containing x and y…

– Θ(1)

– Θ(depth[x])

x6
– Θ(depth[x])
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Trick 1 adapted to trees
• UNION(x, y) can use a simple concatenation strategy:
Make root FIND-SET(y) a child of root FIND-SET(x).
⇒ FIND-SET(y) = FIND-SET(x).

y1

y4 y3

y2 y5

• Adapt Trick 1 to this context:
Union-by-weight:
Merge tree with smaller
weight into tree with
larger weight.

x1

x4 x3

x2 x5 x6

• Variant of Trick 1 (see book):
Union-by-rank:
rank of a tree = its height
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Trick 1 adapted to trees
(union-by-weight)

• Height of tree is logarithmic in weight, because:
• Induction on n
• Height of a tree T is determined by the two subtrees

T1, T2 that T has been united from.
• Inductively the heights of T1, T2 are the logs of  their    

weights.
• If T1 and T2 have different heights:

height(T) = max(height(T1), height(T2))
= max(log weight(T1), log weight(T2))
< log weight(T)

• If T1 and T2 have the same heights:
(Assume 2≤weight(T1)<weight(T2) )
height(T) = height(T1) + 1 ≤ log (2*weight(T1)) 

≤ log weight(T)
• Thus the total cost of any m operations is O(m log n).

CS 5633 Analysis of Algorithms 223/24/09

Trick 2: Path compression
When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

y1

y4 y3

y2 y5

x1

x4 x3

x2 x5 x6

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(x)
is still Θ(depth[x]).

FIND-SET(y2)
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Trick 2: Path compression
When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

y1

y4 y3

y2 y5

x1

x4 x3

x2 x5 x6

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(x)
is still Θ(depth[x]).

FIND-SET(y2)
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Trick 2: Path compression
When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

y1

y4

y3y2

y5

x1

x4 x3

x2 x5 x6

FIND-SET(y2)

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(x)
is still Θ(depth[x]).



7

CS 5633 Analysis of Algorithms 253/24/09

Trick 2: Path compression

• Note that UNION(x,y) first calls FIND-SET(x) and 
FIND-SET(y). Therefore path compression also
affects UNION operations. 
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Analysis of Trick 2 alone
Theorem: Total cost of FIND-SET’s is O(m log n).
Proof: By amortization. Omitted.
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Ackermann’s function A, and 
it’s “inverse” α

Define
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Define α(n) = min {k : Ak(1) ≥ n} ≤ 4 for practical n.

A0(j) = j + 1
A1(j) ~ 2 j
A2(j) ~ 2j 2j > 2j

A3(j) >
A4(j) is a lot bigger.
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2

2
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..
.

j

A0(1) = 2
A1(1) = 3
A2(1) = 7
A3(1) = 2047

A4(1) >

– iterate j+1 times
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2048 times
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Analysis of Tricks 1 + 2
for disjoint-set forests

Theorem: In general, total cost is O(m α(n)).
(long, tricky proof – see Section 21.4 of CLRS)


