

Application: Dynamic connectivity

Sets of vertices represent connected components. Suppose a graph is given to us *incrementally* by

- ADD-VERTEX(v) : MAKE-SET(v)
- ADD-EDGE(u, v) : if not CONNECTED(u, v)then UNION(v, w)

and we want to support *connectivity* queries:

• CONNECTED(u, v): : FIND-SET(u) = FIND-SET(v)Are *u* and *v* in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices. 5

3/24/09

CS 5633 Analysis of Algorithms

Disjoint-set data structure (Union-Find) II

- In all operations pointers to the elements x, yin the data structure are given.
- Hence, we do not need to first search for the element in the data structure
- Let *n* denote the overall number of elements (equivalently, the number of MAKE-SET operations).

3/24/09

CS 5633 Analysis of Algorithms

6

Plan of attack

- We will build a simple disjoint-union data structure that, in an **amortized sense**, performs significantly better than $\Theta(\log n)$ per op., even better than $\Theta(\log \log n)$, $\Theta(\log \log \log n)$, ..., but not quite $\Theta(1)$.
- To reach this goal, we will introduce two key *tricks*. Each trick converts a trivial $\Theta(n)$ solution into a simple $\Theta(\log n)$ amortized solution. Together, the two tricks yield a much better solution.
- First trick arises in an augmented linked list. Second trick arises in a tree structure.

3/24/09

CS 5633 Analysis of Algorithms

Augmented linked-list solution

Store $S_i = \{x_1, x_2, ..., x_k\}$ as unordered doubly linked list. **Augmentation:** Each element x_j also stores pointer $rep[x_i]$ to $rep[S_i]$ (which is the front of the list, x_1).

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$. UNION(x, y)

- concatenates the lists containing *x* and *y*, and
- updates the *rep* pointers for all elements in the list containing *y*.

Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$. UNION(x, y)

- concatenates the lists containing *x* and *y*, and
- updates the *rep* pointers for all elements in the list containing *y*.

Alternative concatenation

UNION(x, y) could instead

- concatenate the lists containing *y* and *x*, and
- update the *rep* pointers for all elements in the list containing *x*.

Trick 1: Smaller into larger (weighted-union heuristic)

To save work, concatenate the smaller list onto the end of the larger list. $Cost = \Theta(length of smaller list)$. Augment list to store its *weight* (# elements).

- Let *n* denote the overall number of elements (equivalently, the number of MAKE-SET operations).
- Let *m* denote the total number of operations.
- Let *f* denote the number of FIND-SET operations.

Theorem: Cost of all UNION's is $O(n \log n)$. **Corollary:** Total cost is $O(m + n \log n)$.

3/24/09

```
CS 5633 Analysis of Algorithms
```


Disjoint set forest: Representing sets as trees

Store each set $S_i = \{x_1, x_2, \dots, x_k\}$ as an unordered, potentially unbalanced, not necessarily binary tree, storing only *parent* pointers. $rep[S_i]$ is the tree root.

- MAKE-SET(x) initializes xas a lone node. $-\Theta(1)$
- FIND-SET(x) walks up the tree containing *x* until it reaches the root. $-\Theta(depth[x])$
- UNION(x, y) calls FIND-SET twice and concatenates the trees containing x and y...- $\Theta(depth[x])$ CS 5633 Analysis of Algorithms 3/24/09

19

17

Tri	ck 2: Path compression	
• Note that FIND-SET affects UN	UNION(<i>x</i> , <i>y</i>) first calls FIND-SET(<i>x</i>) and (<i>y</i>). Therefore path compression also IION operations.	l
3/24/09	CS 5633 Analysis of Algorithms 25	

 $\begin{array}{c}
 \text{Ackermann's function } A, \text{ and} \\
 \text{it's "inverse" } \alpha \\
 \text{Define } A_k(j) = \begin{cases} j+1 & \text{if } k = 0, \\ A_{k-1}^{(j+1)}(j) & \text{if } k \ge 1. & -\text{iterate } j+1 & \text{times} \\
 A_0(j) = j+1 & A_0(1) = 2 \\
 A_1(j) \sim 2j & A_1(1) = 3 \\
 A_2(j) \sim 2j 2^j > 2^j & A_2(1) = 7 \\
 & A_3(1) = 2047 \\
 & 2^{2^{2^{j}}} \\
 & A_3(j) > 2^{2^{j}} \\
 & J_j \\
 & A_4(j) \text{ is a lot bigger. } A_4(1) > 2^{2^{2^{2047}}} \\
 & \text{Define } \alpha(n) = \min_{CS 5633 Analysis of Algorithms} \leq 4 \text{ for practical } n. \\
 & \text{Marked States of Algorithms} \\
 & \text{Marked States of Algorithms} \\
\end{array}$

Analysis of Trick 2 alone

Theorem: Total cost of FIND-SET's is $O(m \log n)$. *Proof:* By amortization. Omitted.

3/24/09

CS 5633 Analysis of Algorithms

26