

CS 5633 -- Spring 2009

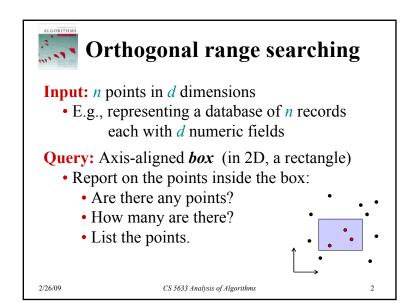
Range Trees

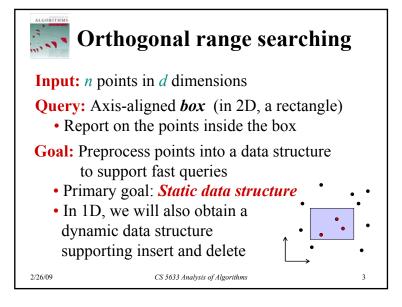
Carola Wenk

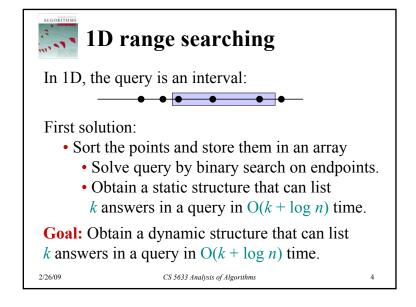
Slides courtesy of Charles Leiserson with small changes by Carola Wenk

2/26/09

CS 5633 Analysis of Algorithms







1D range searching

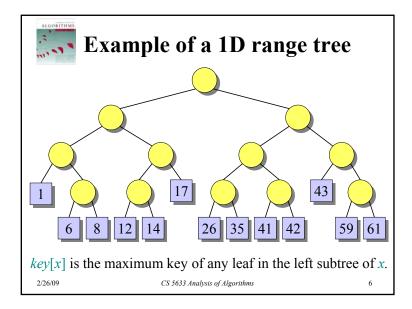
In 1D, the query is an interval:

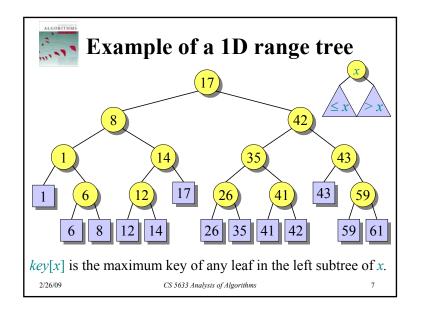
New solution that extends to higher dimensions:

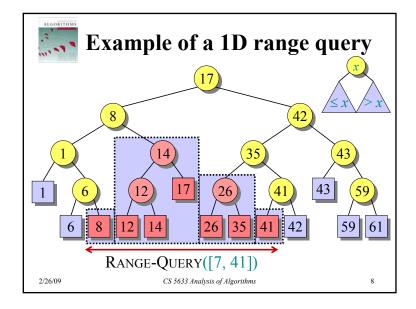
- Balanced binary search tree
 - New organization principle: Store points in the *leaves* of the tree.
 - Internal nodes store copies of the leaves to satisfy binary search property:
 - Node x stores in key[x] the maximum key of any leaf in the left subtree of x.

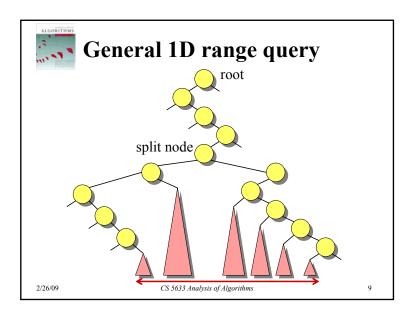
2/26/09

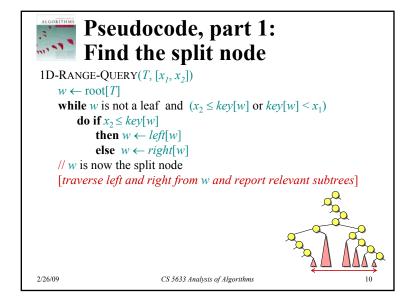
CS 5633 Analysis of Algorithms

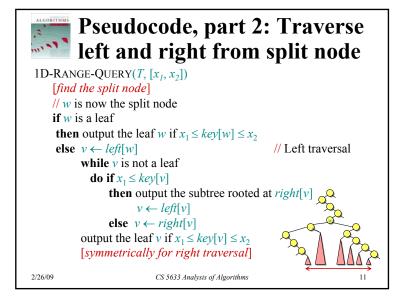












Analysis of 1D-Range-Query

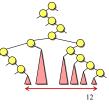
Query time: Answer to range query represented by $O(\log n)$ subtrees found in $O(\log n)$ time. Thus:

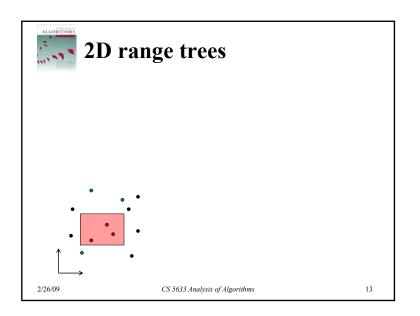
- Can test for points in interval in $O(\log n)$ time.
- Can report all k points in interval in $O(k + \log n)$ time.
- Can count points in interval in $O(\log n)$ time

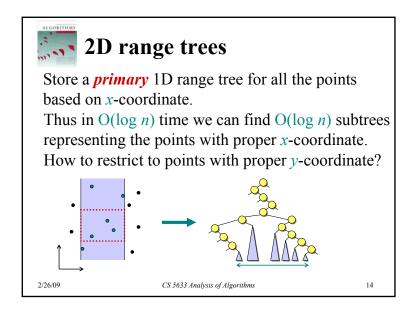
Space: O(n)

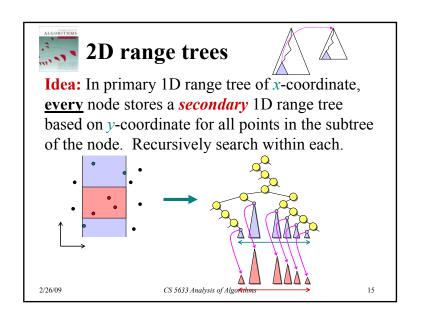
Preprocessing time: $O(n \log n)$

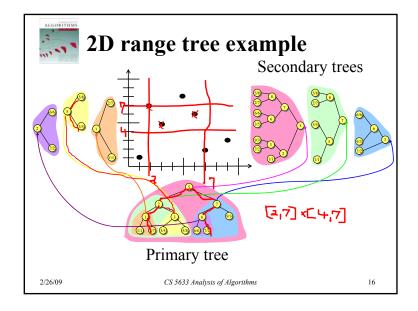
2/26/09 CS 5633 Analysis of Algorithms











Analysis of 2D range trees

Query time: In $O(\log^2 n) = O((\log n)^2)$ time, we can represent answer to range query by $O(\log^2 n)$ subtrees. Total cost for reporting k points: $O(k + (\log n)^2)$.

Space: The secondary trees at each level of the primary tree together store a copy of the points. Also, each point is present in each secondary tree along the path from the leaf to the root. Either way, we obtain that the space is $O(n \log n)$.

Preprocessing time: $O(n \log n)$

2/26/09

CS 5633 Analysis of Algorithms

17

19

d-dimensional range trees

Each node of the secondary y-structure stores a tertiary

z-structure representing the points in the subtree

rooted at the node, etc. Save one log factor using

fractional cascading

Query time: $O(k + \log^d n)$ to report k points.

Space: $O(n \log^{d-1} n)$

Preprocessing time: $O(n \log^{d-1} n)$

2/26/09 CS 5633 Analysis of Algorithms 18

Search in Subsets

Given: Two sorted arrays A_1 and A_2 , with $A_1 \subset A_2$

A query interval [l,r]

Task: Report all elements e in A_1 and A with $l \le e \le r$

Add pointers from A to A_1 : Idea:

 \rightarrow For each $a \in A$ add a pointer to the smallest element $b \in A_1$ with $b \ge a$

Query: Find $l \in A$, follow pointer to A_1 . Both in A and A_1 sequentially output all elements in [l,r].

Query: A 3 10 19 23 30 37 59 62 80 90 [15,40] $A_1 | 10 | 19 | 30 | 62 | 80$

Runtime: $O((\log n + k) + (1 + k)) = O(\log n + k)$

2/26/09

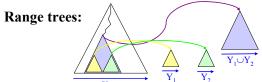
CS 5633 Analysis of Algorithms

Search in Subsets (cont.)

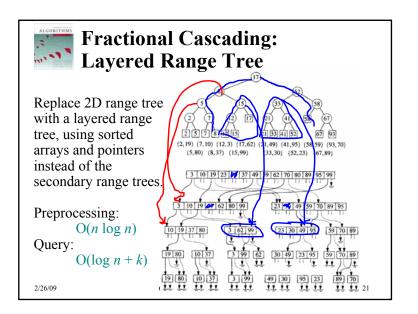
Given: Three sorted arrays A_1 , A_2 , and A_3 , with $A_1 \subset A$ and $A_2 \subset A$

Query: A 3 10 19 23 30 37 59 62 80 90 [15,40] $A_2 = 3 | 23 | 37 | 62 | 90$ $A_1 | 10 | 19 | 30 | 62 | 80 |$

Runtime: $O((\log n + k) + (1+k) + (1+k)) = O(\log n + k)$



2/26/09 CS 5633 Analysis of Algorithms 20



d-dimensional range trees

Query time: $O(k + \log^{d-1} n)$ to report k points,

uses fractional cascading in the last dimension

Space: $O(n \log^{d-1} n)$

Preprocessing time: $O(n \log^{d-1} n)$

Best data structure to date:

Query time: $O(k + \log^{d-1} n)$ to report k points.

Space: O($n (\log n / \log \log n)^{d-1}$) Preprocessing time: $O(n \log^{d-1} n)$

2/26/09 CS 5633 Analysis of Algorithms