CS 5633 -- Spring 2009

More Divide \& Conquer

Carola Wenk
Slides courtesy of Charles Leiserson with small changes by Carola Wenk
1/27/09
CS 5633 Analysis of Algorithms 1

The divide-and-conquer design paradigm

1. Divide the problem (instance) into subproblems.
a subproblems, each of size n / b
2. Conquer the subproblems by solving them recursively.
3. Combine subproblem solutions.

Runtime is $f(n)$

1/27/09
CS 5633 Analysis of Algorithms

The master method

The master method applies to recurrences of the form

$$
T(n)=a T(n / b)+f(n),
$$

where $a \geq 1, b>1$, and f is asymptotically positive.

Three common cases

Compare $f(n)$ with $n^{\log _{b} a}$:

1. $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$.

- $f(n)$ grows polynomially slower than $n^{\log _{b} a}$ (by an n^{ε} factor).
Solution: $T(n)=\Theta\left(n^{\log _{b} a}\right)$.

2. $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$ for some constant $k \geq 0$.

- $f(n)$ and $n^{\log _{b} a}$ grow at similar rates.

Solution: $T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$.

Examples

Ex. $T(n)=4 T(n / 2)+\operatorname{sqrt}(n)$
$a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=\operatorname{sqrt}(n)$.
CASE 1: $f(n)=O\left(n^{2-\varepsilon}\right)$ for $\boldsymbol{\varepsilon}=1.5$.
$\therefore T(n)=\Theta\left(n^{2}\right)$.
Ex. $T(n)=4 T(n / 2)+n^{2}$
$a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{2}$.
Case 2: $f(n)=\Theta\left(n^{2} \log ^{0} n\right)$, that is, $k=0$.
$\therefore T(n)=\Theta\left(n^{2} \log n\right)$.

Master theorem (summary)

$$
T(n)=a T(n / b)+f(n)
$$

CASE 1: $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$

$$
\Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right)
$$

CASE 2: $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$

$$
\Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)
$$

CASE 3: $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ and $a f(n / b) \leq c f(n)$ for some constant $c<1$.

$$
\Rightarrow T(n)=\Theta(f(n))
$$

1/27/09

Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.
\# subproblems $\begin{aligned} & T(n)=2 T(n / 2)+O(n) \\ & \text { subproblem size } \quad \begin{array}{l}\text { work dividing } \\ \text { and combining }\end{array}\end{aligned}$

$$
n^{\log _{b} a}=n^{\log _{2} 2}=n^{1}=\mathrm{n} \Rightarrow \operatorname{CASE} 2(k=0)
$$

$$
\Rightarrow T(n)=\Theta(n \log n)
$$

1/27/09
CS 5633 Analysis of Algorithms

Recurrence for binary search

$$
\begin{aligned}
& n^{\log _{b} a}=n^{\log _{2} 1}=n^{0}=1 \Rightarrow \text { CASE } 2(k=0) \\
& \quad \Rightarrow T(n)=\Theta(\log n)
\end{aligned}
$$

Powering a number

Problem: Compute a^{n}, where $n \in \boldsymbol{N}$.
Naive algorithm: $\Theta(n)$.
Divide-and-conquer algorithm: (recursive squaring)

$$
\begin{gathered}
a^{n}= \begin{cases}a^{n / 2} \cdot a^{n / 2} & \text { if } n \text { is even } \\
a^{(n-1) / 2} \cdot a^{(n-1) / 2} \cdot a & \text { if } n \text { is odd }\end{cases} \\
T(n)=T(n / 2)+\Theta(1) \Rightarrow T(n)=\Theta(\log n)
\end{gathered}
$$

1/27/09

Fibonacci numbers

Recursive definition:

$$
F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { if } n \geq 2\end{cases}
$$

$\begin{array}{lllllllllll}0 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & \cdots\end{array}$
Naive recursive algorithm: $\Omega\left(\phi^{n}\right)$ (exponential time), where $\phi=(1+\sqrt{5}) / 2$ is the golden ratio.

Computing Fibonacci numbers

Naive recursive squaring: $F_{n}=\phi^{n} / \sqrt{5}$ rounded to the nearest integer.

- Recursive squaring: $\Theta(\log n)$ time.
- This method is unreliable, since floating-point arithmetic is prone to round-off errors.
Bottom-up (one-dimensional dynamic programming):
- Compute $F_{0}, F_{1}, F_{2}, \ldots, F_{\mathrm{n}}$ in order, forming each number by summing the two previous.
- Running time: $\Theta(n)$.

1/27/09
CS 5633 Analysis of Algorithms

Convex Hull

- Given a set of pins on a pinboard - And a rubber band around them
- How does the rubber band look when it snaps tight?

- We represent convex hull as the sequence of points on the convex hull polygon, in counter-clockwise order.

Convex Hull: Divide \& Conquer

- Preprocessing: sort the points by x coordinate
- Divide the set of points into two sets A and B:
- A contains the left $\lfloor n / 2\rfloor$ points,
- \mathbb{B} contains the right $\lceil\mathrm{n} / 2\rceil$ points

Recursively compute the convex hull of \mathbf{A}

A B

- Recursively compute the convex

hull of B
- Merge the two convex hulls

Merging

- Find upper and lower tangent - With those tangents the convex hull of $A \cup B$ can be computed from the convex hulls of A and the convex hull of B in $O(n)$ linear time

A
B

Finding the lower tangent

$\mathrm{a}=$ rightmost point of A
 $\mathrm{b}=$ leftmost point of B

while $\mathrm{T}=\mathrm{ab}$ not lower tangent to both convex hulls of A and B do
while T not lower tangent to convex hull of A do\{
$\mathrm{a}=\mathrm{a}-1$
\}
while T not lower tangent to

convex hull of B do $\{$


```
}
```

 \}

Convex Hull: Runtime

- Preprocessing: sort the points by xcoordinate
- Divide the set of points into two sets \mathbf{A} and \mathbb{B} :
- A contains the left $\lfloor n / 2\rfloor$ points,
- B contains the right $\lceil n / 2\rceil$ points

Recursively compute the convex hull of A

- Recursively compute the convex hull of B
- Merge the two convex hulls
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$ just once
$\mathrm{T}(\mathrm{n} / 2)$
$\mathrm{O}(\mathrm{n})$

Matrix multiplication

$$
\left.\begin{array}{c}
\text { Input: } A=\left[a_{i j}\right], B=\left[b_{i j}\right] . \\
\text { Output: } C=\left[c_{i j}\right]=A \cdot B .
\end{array}\right\} i, j=1,2, \ldots, n .
$$

1/27/09

Standard algorithm

$$
\begin{aligned}
& \text { for } i \leftarrow 1 \text { to } n \\
& \qquad \begin{array}{l}
\text { do for } j \leftarrow 1 \text { to } n \\
\\
\quad \text { do } c_{i j} \leftarrow 0 \\
\\
\quad \text { for } k \leftarrow 1 \text { to } n \\
\\
\quad \mathbf{d o} c_{i j} \leftarrow c_{i j}+a_{i k} \cdot b_{k j}
\end{array}
\end{aligned}
$$

$$
\text { Running time }=\Theta\left(n^{3}\right)
$$

Analysis of D\&C algorithm

$$
n^{\log _{b} a}=n^{\log _{2} 8}=n^{3} \Rightarrow \text { CASE } 1 \Rightarrow T(n)=\Theta\left(n^{3}\right) .
$$

No better than the ordinary algorithm.

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

$$
\begin{array}{ll}
P_{1}=a \cdot(f-h) & r=P_{5}+P_{4}-P_{2}+P_{6} \\
P_{2}=(a+b) \cdot h & s=P_{1}+P_{2} \\
P_{3}=(c+d) \cdot e & t=P_{3}+P_{4} \\
P_{4}=d \cdot(g-e) & u=P_{5}+P_{1}-P_{3}-P_{7} \\
P_{5}=(a+d) \cdot(e+h) & \\
P_{6}=(b-d) \cdot(g+h) & 7 \text { mults, } 18 \text { adds/subs. } \\
P_{7}=(a-c) \cdot(e+f) & \begin{array}{l}
\text { Note: No reliance on } \\
\text { commutativity of mult! }
\end{array}
\end{array}
$$

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

$$
\begin{aligned}
P_{1}=a \cdot(f-h) & r= & P_{5}+P_{4}-P_{2}+P_{6} \\
P_{2}=(a+b) \cdot h & = & (a+d)(e+h) \\
P_{3}=(c+d) \cdot e & & +d(g-e)-(a+b) h \\
P_{4}=d \cdot(g-e) & & +(b-d)(g+h) \\
P_{5}=(a+d) \cdot(e+h) & = & a e+a h+d e+d h \\
P_{6}=(b-d) \cdot(g+h) & & +d g-d e-a h-b h \\
P_{7}=(a-c) \cdot(e+f) & & +b g+b h-d g-d h \\
& = & a e+b g
\end{aligned}
$$

Strassen's algorithm

1. Divide: Partition A and B into $(n / 2) \times(n / 2)$ submatrices. Form P-terms to be multiplied using + and - .
2. Conquer: Perform 7 multiplications of $(n / 2) \times(n / 2)$ submatrices recursively.
3. Combine: Form C using + and - on $(n / 2) \times(n / 2)$ submatrices.

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
$$

Analysis of Strassen

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
$$

$$
n^{\log _{b} a}=n^{\log _{2} 7} \approx n^{2.81} \Rightarrow \text { CASE } 1 \Rightarrow T(n)=\Theta\left(n^{\log 7}\right) .
$$

The number 2.81 may not seem much smaller than 3 , but because the difference is in the exponent, the impact on running time is significant. In fact, Strassen's algorithm beats the ordinary algorithm on today's machines for $n \geq 30$ or so.

Best to date (of theoretical interest only): $\Theta\left(n^{2.376 \cdots}\right)$.

Conclusion

- Divide and conquer is just one of several powerful techniques for algorithm design.
- Divide-and-conquer algorithms can be analyzed using recurrences and the master method (so practice this math).
- Can lead to more efficient algorithms

