4/23/09

Schedule (subject to change)

Date	Material
Tu 1/13	Analyzing algorithms (Ch. 2.2)
,	Best case and worst case runtimes; insertion sort, incremental algorithm
Th 1/15	Asymptotic notation (Ch. 3, Ch. A)
	O, Ω, Θ, o , limit-theorem; runtime for code-snippets
	Homework 1 assigned
Tu 1/20	Heapsort (Ch. 6)
	Abstract data types (ADT), priority queue, heap, heapsort, linear-time buildheap
Th $1/22$	Divide-and-conquer (Ch. 2.3) and recurrences (Ch. 4.1, 4.2)
	Divide-and-conquer, merge sort, binary search; Runtime recurrences. Solving re-
	currences with recursion tree; solving the recurrence with the substitution method
	(induction)
	Homework 1 due; homework 2 assigned
Tu $1/27$	Master theorem (Ch. 4.3), more divide-and-conquer (Ch. 31.6 pages 879–
	880; Ch. 30 pages $822-824$; 28.2)
	Use of master theorem to solve recurrences. Repeated squaring for exponentiation,
	Fibonacci numbers, polynomial multiplication, Strassen's matrix multiplication.
Th $1/29$	Randomized algorithms (Ch. 5.1–5.3), random variables and expected
	values (Ch. C.3)
	Hiring problem; Expected runtime analysis. Random variables, expected value.
	Homework 2 due; homework 3 assigned
Tu $2/3$	Quicksort (Ch. 7.1–7.4)
	Quicksort, best-case and worst-case runtimes, randomized quicksort.
Th $2/5$	Sorting (Ch. 8.1, 8.2, 8.3)
	Decision trees, lower $\Omega(n \log n)$ bound for comparison sorts, counting sort, radix sort
T 0/10	Homework 3 due; homework 4 assigned
Tu $2/10$	Order statistics (Ch. 9)
	Order statistics (find <i>i</i> -th smallest element); Randomized selection, deterministic
$T_{\rm L} 0/10$	selection in linear time
Th $2/12$	Red-black trees (Ch. 13.1, 13.2, 13.3)
	Red-black tree property, rotations, insertion; abstract data types, ADT dictionary
$T_{11} 9/17$	Homework 4 due B-trees (Ch. 18.1, 18.2)
Tu $2/17$	k-ary search trees, B-tree def., height, insertion
	Homework 5 assigned
Th 9/10	
Th $2/19$	Test 1 Material until 2/5 (inclusivo)
T. 0/04	Material until 2/5 (inclusive)
Tu $2/24$	Augmenting Data Structures (Ch. 14)
	Augmenting red-black trees; Dynamic order statistics, interval trees
Th $2/26$	Range Trees (+)
	Range trees, in 2 dimensions and in d dimensions; preprocessing time, query time.
T. 2/2	Homework 5 due; homework 6 assigned
Tu $3/3$	Dynamic programming (Ch. 15.2, 15.3, 15.4)
	Fibonacci, binomial coefficient, LCS: fill table, then construct solution from the
	table.

Date	Material
Th $3/5$	Dynamic programming (Ch. 15.2, 15.3, 15.4)
	Matrix chain multiplication; general outline of dynamic programming: Optimal sub-
	structure (recurrence), overlapping subproblems, fill table bottom-up or by memo-
	ization.
	Homework 6 due
Tu 3/10	SPRING BREAK
Th 3/12	SPRING BREAK
Tu 3/17	Greedy algorithms (Ch. 16.2, problem 16-1 on page 402; Ch. 16.3)
	Greedy algorithms (greedy-choice property, optimal substructure). Making change,
	fractional knapsack. Huffman codes
Th 3/19	Amortized analysis (Ch. 17.1, 17.2, 17.4)
	Aggregate analysis (total runtime of n operations), accounting method (prepay for
	later operations); binary counter, dynamic tables
	Homework 7 assigned
Mo 3/23	Drop deadline to drop with a 'W'
Tu 3/24	Union-Find (Ch. 21.1, 21.2, 21.3)
	Operations, list implementation, tree implementation, union-by-weight / union-by
	rank, path compression. Ackermann function, and inverse Ackermann function α .
Th $3/26$	Elementary Graph Algorithms (Ch. 22.1–22.4)
	Representations of graphs, breadth-first search (BFS), depth-first search (DFS),
	topological sort
	Homework 7 due
Tu 3/31	Test Review
	Review for test 2
	Homework 8 assigned
Th $4/2$	Test 2
	Material from $2/10$ until $3/19$ (inclusive)
Tu 4/7	Minimum Spanning Trees (Ch. 23)
	Prim (grows single tree), Kruskal (grows forest; uses union/find data structure)
Th $4/9$	Single-source shortest paths (Ch. 24 without 24.4)
	Optimal substructure, triangle inequality, relaxation step; Dijkstra (only for non-
	negative edge weights), predecessor tree (shortest path tree); Bellman-Ford, detec-
	tion of negative-weight cycles; Shortest paths in a DAG
Tu 4/14	All-Pairs Shortest Paths (Ch. 25.2)
	Dynamic programming: Floyd-Warshall
	Homework 8 due; homework 9 assigned
Th $4/16$	P and NP (Ch. 34)
	Decision problems, definition of classes P and NP, polynomial-time reductions
Tu 4/21	P and NP (Ch. 34)
	NP-hardness, NP-completeness; Show that problems are NP-complete by reducing
	from other problems; TSP, Clique, Independent Set, Vertex Cover, Hamilton Path,
	Hamilton Circuit
	Homework 9 due; homework 10 assigned
Th $4/23$	Approximation Algorithms (Ch. 35.1 and 35.2)
	Constant factor approximation; Vertex cover; MST for Euclidean TSP
Tu 4/28	Review for Final
	Review for the final exam
	Homework 10 due

Chapter numbers refer to Levitin's book. "+" indicates additional material.

The comprehensive final exam will be on Tuesday May 5th, 5pm - 7:30pm.