
CS 5633 Analysis of Algorithms – Spring 09

3/19/09

7. Homework
Due Thursday 3/26/09 before class

Justify all your answers.

1. Saving space (5 points)

a) (2 points) The bottom-up dynamic programming algorithm computing
the n-th Fibonacci number F (n) takes O(n) time and uses O(n) space.
Show how to modify the algorithm to use only constant space.

b) (3 points) Show how to perform the traceback in order to construct a
longest common subsequence from the DP table without using the auxiliary
arrow-table. Make your algorithm as efficient as possible. What is the
runtime of this traceback algorithm?

2. Knapsack DP (6 points)
Design a dynamic programming algorithm for the 0-1-Knapsack problem.

• (2 points) Let D[i, w] be the value of a solution considering items 1..i only
and with maximum weight w. Come up with a recurrence relation for
D[i, w]. (Hint: it has two non-trivial cases, and it should use the maximum
at some point.)

• (2 points) Use dynamic programming to compute D[n, W ]. What is the
runtime in terms of n and W?

• (2 points) Extract the optimum set of items from the dynamic
programming table. What is the runtime in terms of n and W?

3. Greedy scheduling (6 points)

Suppose you are the manager of a train station. You are given a sorted set
A = a1, . . . , an of n points in time which are the times when trains will arrive at
your station. Only when a train arrives you need to have employees at the
station. Due to union rules, each employee can work at most one hour at the
station. The problem is to find a scheduling of employees (i.e., a set of one-hour
intervals) that covers all the times in A and uses the fewest number of employees.

Prove or disprove that the two greedy approaches below correctly solve this
problem. (Only one is correct, and the correctness can be proved using a
copy-paste argument. In order to disprove give a counterexample.)

(a) Let I be an interval that covers the most number of points in A. Add I to
the solution and recursively continue on the points in A not covered by I.

(b) Let aj be the smallest point in A. Add the interval I = (aj , aj + 1) to the
solution, and recursively continue on the points in A not covered by I.
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4. Binary Counter (3 points)
Use aggregate analysis to show that, over a sequence of n increment operations on
a binary counter, the amortized runtime of one such increment operation is O(1).
(Hint: Study the flipping behavior of every single bit A[i].)

5. Queue from Two Stacks – (7 points)

Assume we are given an implementation of a stack, in which Push and Pop
operations take constant time each. We now implement a queue using two stacks
A and B as follows:

Enqueue(x):
• Push x onto stack A

Dequeue():
• If stack B is nonempty, return B.Pop()
• Otherwise pop all elements from A and while doing so push them onto B.
Return B.Pop()

a) (2 points) Show how the following sequence of operations operates on
the two stacks. Suppose the stacks are initially empty.
Enqueue(9), Enqueue(8), Enqueue(7), Enqueue(6), Dequeue(), Dequeue(),
Enqueue(5), Enqueue(6), Dequeue()
b) (2 points) Why is the algorithm correct? Argue which invariants hold
for A and B.
c) (3 points) Prove using the accounting method that the amortized
runtime of Enqueue and Dequeue each is O(1). Argue why your account
balance is always non-negative.

Related questions from previous PhD Exams

Just for your information. You do not need to solve them for homework credit.

1. This problem is concerned with recurrences, recursion and dynamic
programming.

Consider the following recurrence:

T (n) =
n∑

i=1

T (i− 1)T (n− i)

for any n > 0, and T (0) = 1. We are concerned with computing T (n) for a given
value of n ≥ 1.

(a) Calculate the values of T (1), T (2), and T (3).
(b) Use mathematical induction to prove that 2n ≤ T (n) ≤ n! for all n ≥ 0.
(c) Provide an algorithm that implements the recursion directly and show that

it requires an exponential number, in n, of arithmetic operations.
(d) Give a dynamic programming algorithm that only uses a polynomial

number of arithmetic operations, and analyze its runtime.


