4/21/09

10. Homework Due 4/28/09 before class

1. Transitivity (3 points)

Show the transitivity property of the polynomial-time reduction " \leq " (fact 3 on slide 17):

Let Π, Π', Π'' be three decision problems. If $\Pi \leq \Pi'$ and $\Pi' \leq \Pi''$ then $\Pi \leq \Pi''$.

2. To be or not to be... in NP (5 points)

Which of the problems below are in NP and which are not? Justify your answers.

- (a) Given a directed acyclic graph G. Topologically sort G.
- (b) Given an undirected graph G. Is G a tree?
- (c) Given an unsorted array of n numbers. What is the median?
- (d) Given a connected directed graph G = (V, E). Is there a closed path that visits every edge exactly once?
- (e) Given n numbers. Is there a subset of these numbers that sums up to 42?

3. Subgraph isomorphism (5 points)

Problem 34.5-1 on page 1017.

Hint: Show that the problem is in NP, and then show that it is NP-hard. For the NP-hardness you need to pick an NP-hard problem, and polynomially reduce it to the subgraph-isomorphism problem. It would make sense to use a problem that involves a graph and a subgraph.

4. TSP (5 points)

Given that the Traveling Salesperson Problem (TSP) for undirected graphs (which we covered in class) is NP-complete, show that TSP for directed graphs is also NP-complete.

5. $\Pi_1 \leq \Pi_2$ (7 points)

Let Π_1 and Π_2 be decision problems and suppose Π_1 is polynomial time reducible to Π_2 , so, $\Pi_1 \leq \Pi_2$. Answer and justify each of the questions below:

- Does this imply that Π_2 is NP-complete?
- If Π_2 is polynomially reducible to Π_1 , are Π_1 and Π_2 both NP-complete?
- If Π_1 and Π_2 are NP-complete, is Π_2 polynomially reducible to Π_1 ?
- If $\Pi_1 \notin NP$ does this imply that $\Pi_2 \notin NP$?
- If Π_2 is NP-complete, does this imply that $\Pi_1 \in NP$?
- If Π_1 is NP-complete, does this imply that $\Pi_2 \in NP$?
- If Π_1 is NP-complete and $\Pi_2 \in P$, what does this imply?

FLIP over to back page \implies

Related questions from previous PhD Exams

Just for your information. You **do not** need to solve them for homework credit.

1. This problem is concerned with NP-completeness.

Consider the following two decision problems.

VERTEX COVER.

Instance: An undirected graph G = (V, E), and a positive integer k. **Decision Problem**: Is there a vertex cover of size k? A vertex cover is a subset $V' \subseteq V$ such that if $(u, v) \in E$, then $u \in V'$ or $v \in V'$ (or both).

INDEPENDENT SET.

Instance: An undirected graph G = (V, E) and a positive integer k. **Decision Problem**: Is there an independent set of size k? An *independent set* is a subset $V' \subseteq V$ such that each edge in E is incident on at most one vertex in V'.

- (a) Define polynomial-time reducibility.
- (b) Show that INDEPENDENT SET is polynomial-time reducible to VERTEX COVER.
- (c) Suppose problem P_1 is polynomial-time reducible to problem P_2 $(P_1 \leq_P P_2)$. If there is a polynomial algorithm for P_1 , what can be implied about P_2 ? If there is a polynomial algorithm for P_1 , what can be implied about P_1 ?
- (d) Consider the complexity classes P, NP, NP-complete, and NP-hard. If $P \neq NP$, what would be the subset relationships among these four classes? If P = NP, what would be the subset relationships among these four classes?
- (e) Assume that VERTEX COVER is an NP-complete problem. Use VERTEX COVER to show that INDEPENDENT SET is NP-complete. Specify what steps need to be done, and provide the details of your solution.
- 2. This problem is concerned with NP-completeness. Let Π_1 and Π_2 be two decision problems for which is known that $\Pi_1 \leq_P \Pi_2$ (i.e., Π_1 is polynomially reducable to Π_2). Briefly state what can be inferred (if anything) in each of the following cases.
 - (a) $\Pi_1 \in NP$
 - (b) $\Pi_2 \in P$
 - (c) Π_1 is *NP*-hard
 - (d) Π_2 is *NP*-complete