1. Homework

Due 1/22/09 before class

1. Code snippets (4 points)

For each of the two code snippets below give their Θ-runtime depending on n. Justify your answers.
(a) (3 points)

```
for(i=n; i>=1; i=i-3){
    for(j=n; j>=1; j=j/3){
        for(k=3*n; k>=1; k--){
            print(" ");
        }
    }
}
```

(b) (1 point)

```
for(i=2; i<=n; i=i*i){
    print(" ");
}
```

2. O and Ω (4 points)

Prove the following, using the definitions of O and Ω :

- (2 points) $5 n^{3}+3 n+2 \in O\left(n^{3}\right)$
- (2 points) $5 n^{3}+3 n+2 \notin \Omega\left(n^{4}\right)$

3. Selection sort (7 points)

Consider sorting n numbers stored in array A by first finding the smallest element of A and exchanging it with the element in $A[1]$. Then find the second smallest element of A, and exchange it with $A[2]$. Continue in this manner for the first $n-1$ elements of A. This algorithm is known as selection sort.

- (2 points) Write pseudocode for this algorithm.
- (2 points) What loop invariant does this algorithm maintain? Argue (informally) why this loop invariant will help prove the correctness of the algorithm.
- (1 point) Why does the algorithm need to run for only the first $n-1$ elements, rather than for all n elements?
- (2 points) Give best-case and worst-case running times (and example inputs attaining these runtimes) of selection sort in Θ-notation.

4. Big-Oh ranking (14 points)

Rank the following functions by order of growth, i.e., find an arrangement f_{1}, f_{2}, \ldots of the functions satisfying $f_{1} \in O\left(f_{2}\right), f_{2} \in O\left(f_{3}\right), \ldots$. Partition your list into equivalence classes such that f and g are in the same class if and only if $f \in \Theta(g)$. For every two functions f_{i}, f_{j} that are adjacent in your ordering, prove shortly why $f_{i} \in O\left(f_{j}\right)$ holds. And if f and g are in the same class, prove that $f \in \Theta(g)$.

$$
\begin{gathered}
3 n^{3}+4 n^{4}, n \log ^{2} n, n^{3}, \log \log n, 2^{n}, \log ^{2} n, \sqrt{n}, \sqrt[3]{n}, \log n, n^{n}, n, n \log n, \\
2^{n+2}, 4^{n}, \log \sqrt{n}
\end{gathered}
$$

As a reminder: $\log ^{2} n=(\log n)^{2}$ and $\log \log n=\log (\log n)$. Bear in mind that in some cases it might be useful to show $f(n) \in o(g(n))$, since $o(g(n)) \subset O(g(n))$. If you try to show that $f(n) \in o(g(n))$, then it might be useful to apply the rule of l'Hôpital which states that

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

if the limits exist; where $f^{\prime}(n)$ and $g^{\prime}(n)$ are the derivatives of f and g, respectively.

