
CS 5633 Analysis of Algorithms – Spring 09

1/15/09

1. Homework
Due 1/22/09 before class

1. Code snippets (4 points)

For each of the two code snippets below give their Θ-runtime depending on n.
Justify your answers.

(a) (3 points)

for(i=n; i>=1; i=i-3){
for(j=n; j>=1; j=j/3){
for(k=3*n; k>=1; k--){
print(" ");

}
}

}

(b) (1 point)

for(i=2; i<=n; i=i*i){
print(" ");

}

2. O and Ω (4 points)
Prove the following, using the definitions of O and Ω:

• (2 points) 5n3 + 3n + 2 ∈ O(n3)

• (2 points) 5n3 + 3n + 2 6∈ Ω(n4)

3. Selection sort (7 points)
Consider sorting n numbers stored in array A by first finding the smallest element
of A and exchanging it with the element in A[1]. Then find the second smallest
element of A, and exchange it with A[2]. Continue in this manner for the first
n− 1 elements of A. This algorithm is known as selection sort.

• (2 points) Write pseudocode for this algorithm.

• (2 points) What loop invariant does this algorithm maintain? Argue (infor-
mally) why this loop invariant will help prove the correctness of the algorithm.

• (1 point) Why does the algorithm need to run for only the first n−1 elements,
rather than for all n elements?

• (2 points) Give best-case and worst-case running times (and example inputs
attaining these runtimes) of selection sort in Θ-notation.

Flip over to back page =⇒



4. Big-Oh ranking (14 points)
Rank the following functions by order of growth, i.e., find an arrangement f1, f2, ...
of the functions satisfying f1 ∈ O(f2), f2 ∈ O(f3),... . Partition your list into
equivalence classes such that f and g are in the same class if and only if f ∈ Θ(g).
For every two functions fi, fj that are adjacent in your ordering, prove shortly why
fi ∈ O(fj) holds. And if f and g are in the same class, prove that f ∈ Θ(g).

3n3 + 4n4, n log2 n, n3, log log n, 2n, log2 n,
√

n, 3
√

n, log n, nn, n, n log n,

2n+2, 4n, log
√

n

As a reminder: log2 n = (log n)2 and log log n = log(log n). Bear in mind that in
some cases it might be useful to show f(n) ∈ o(g(n)), since o(g(n)) ⊂ O(g(n)). If
you try to show that f(n) ∈ o(g(n)), then it might be useful to apply the rule of
l’Hôpital which states that

lim
n→∞

f(n)
g(n)

= lim
n→∞

f ′(n)
g′(n)

if the limits exist; where f ′(n) and g′(n) are the derivatives of f and g, respectively.


