CS 5633 -- Spring 2008

ALGORITHMS

Union-Find Data Structures Carola Wenk
Slides courtesy of Charles Leiserson with small changes by Carola Wenk
3/25/08
CS 5633 Analysis of Algorithms

Disjoint-set data structure (Union-Find)

Problem:

- Maintain a dynamic collection of pairwise-disjoint sets $\mathrm{S}=\left\{S_{1}, S_{2}, \ldots, S_{r}\right\}$.
- Each set S_{i} has one element distinguished as the representative element, rep $\left[S_{\mathrm{i}}\right]$.
- Must support 3 operations:
- $\operatorname{Make-Set}(x)$: adds new set $\{x\}$ to S
with $\operatorname{rep}[\{x\}]=x \quad$ (for any $x \notin S_{i}$ for all i)
- $\operatorname{UniON}(x, y)$: replaces sets S_{x}, S_{y} with $S_{x} \cup S_{y}$ in S
(for any x, y in distinct sets S_{x}, S_{y})
- $\operatorname{Find}-\operatorname{Set}(x)$: returns representative rep $\left[S_{x}\right]$ of set S_{x} containing element x
3/25/08
CS 5633 Analysis of Algorithms

Disjoint-set data structure (Union-Find) II

- In all operations pointers to the elements x, y in the data structure are given.
- Hence, we do not need to first search for the element in the data structure.
- Let n denote the overall number of elements (equivalently, the number of MAKE-SET operations).

Simple linked-list solution

Store each set $S_{i}=\left\{x_{1}, x_{2}, \ldots, x_{\mathrm{k}}\right\}$ as an (unordered) doubly linked list. Define representative element $\operatorname{rep}\left[S_{i}\right]$ to be the front of the list, x_{1}.

$\Theta(1) \cdot \operatorname{Make}-\operatorname{Set}(x)$ initializes x as a lone node.

- $\operatorname{Find-Set}(x)$ walks left in the list containing
$\Theta(n) \quad x$ until it reaches the front of the list.
$\Theta(n) \cdot \operatorname{Union}(x, y)$ calls Find-Set on y, finds the last element of list x, and concatenates both lists, leaving rep. as Find-Set [x].

CS 5633 Analysis of Algorithms

Plan of attack

- We will build a simple disjoint-union data structure that, in an amortized sense, performs significantly better than $\Theta(\log n)$ per op., even better than $\Theta(\log \log n), \Theta(\log \log \log n), \ldots$, but not quite $\Theta(1)$.
-To reach this goal, we will introduce two key tricks. Each trick converts a trivial $\Theta(n)$ solution into a simple $\Theta(\log n)$ amortized solution. Together, the two tricks yield a much better solution.
- First trick arises in an augmented linked list. Second trick arises in a tree structure.

Simple balanced-tree solution

maintain how?
Store each set $S_{i}=\left\{x_{1}, x_{2}, \ldots, x_{\mathrm{k}}\right\}$ as a balanced tree (ignoring keys). Define representative element $\operatorname{rep}\left[S_{i}\right]$ to be the root of the tree.

- $\operatorname{MaKe}-\operatorname{Set}(x)$ initializes x
$\Theta(1)$ as a lone node.
- Find-Set (x) walks up the tree $\Theta(\log n)$ containing x until reaching root.
$\Theta(\log n) \operatorname{UNION}(x, y)$ calls Find-SET on
$\Theta(\log n) y$, finds a leaf of x and concatenates both trees, changing rep. of y
3/25/08
CS 5633 Analysis of Algorithms
How?
$S_{i}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$

\therefore Augmented linked-list solution

Store $S_{i}=\left\{x_{1}, x_{2}, \ldots, x_{\mathrm{k}}\right\}$ as unordered doubly linked list. Augmentation: Each element x_{j} also stores pointer rep $\left[x_{j}\right]$ to rep $\left[S_{i}\right]$ (which is the front of the list, x_{1}).

- Find-SET (x) returns rep $[x]$.
- $\operatorname{Union}(x, y)$ concatenates lists containing x and y and updates the rep pointers for all elements in the list containing y.

Example of
 augmented linked-list solution

Each element x_{j} stores pointer rep $\left[x_{j}\right]$ to rep $\left[S_{i}\right]$. $\operatorname{Union}(x, y)$

- concatenates the lists containing x and y, and
- updates the rep pointers for all elements in the list containing y.

3/25/08
CS 5633 Analysis of Algorithms

Example of augmented linked-list solution

Each element x_{j} stores pointer rep $\left[x_{j}\right]$ to rep $\left[S_{i}\right]$. $\operatorname{UNION}(x, y)$

- concatenates the lists containing x and y, and - updates the rep pointers for all elements in the list containing y.

Example of augmented linked-list solution

Each element x_{j} stores pointer rep $\left[x_{j}\right]$ to rep $\left[S_{i}\right]$.
$\operatorname{Union}(x, y)$

- concatenates the lists containing x and y, and
- updates the rep pointers for all elements in the list containing y.

Alternative concatenation

$\operatorname{UniON}(x, y)$ could instead

- concatenate the lists containing y and x, and
- update the rep pointers for all elements in the list containing x.

Alternative concatenation

$\operatorname{UNION}(x, y)$ could instead

- concatenate the lists containing y and x, and
- update the rep pointers for all elements in the list containing x.

Alternative concatenation

$\operatorname{UnION}(x, y)$ could instead

- concatenate the lists containing y and x, and
- update the rep pointers for all elements in the list containing x.

Trick 1: Smaller into larger

(weighted-union heuristic)
To save work, concatenate smaller list onto the end of the larger list. Cost $=\Theta$ (length of smaller list). Augment list to store its weight (\# elements).

- Let n denote the overall number of elements (equivalently, the number of MAKE-SET operations).
- Let m denote the total number of operations.
- Let f denote the number of Find-SET operations.

Theorem: Cost of all Union's is $\mathrm{O}(n \log n)$. Corollary: Total cost is $\mathrm{O}(m+n \log n)$.

Analysis of Trick 1

(weighted-union heuristic)
Theorem: Total cost of Union's is $\mathrm{O}(n \log n)$.
Proof. • Monitor an element x and set S_{x} containing it.

- After initial MAKE-SET (x), weight $\left[S_{x}\right]=1$.
- Each time S_{x} is united with S_{y} :
- if weight $\left[S_{y}\right] \geq$ weight $\left[S_{x}\right]$:
- pay 1 to update rep $[x]$, and
- weight $\left[S_{x}\right]$ at least doubles (increases by weight $\left[S_{y}\right]$).
- if weight $\left[S_{y}\right]<$ weight $\left[S_{x}\right]$:
- pay nothing, and
- weight $\left[S_{x}\right]$ only increases.

Thus pay $\leq \log n$ for x.

Disjoint set forest:
 Representing sets as trees

Store each set $S_{i}=\left\{x_{1}, x_{2}, \ldots, x_{\mathrm{k}}\right\}$ as anordered, potentially unbalanced, not necessarily binary tree, storing only parent pointers. rep $\left[S_{i}\right]$ is the tree root.

- Make-Set (x) initializes x as a lone node. $\quad-\Theta(1)$
- Find-Set (x) walks up the tree containing x until it reaches the root. $-\Theta($ depth $[x])$
- Union (x, y) calls Find-SET twice and concatenates the trees containing x and $y \ldots-\Theta($ depth $[x])$ $S_{i}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$ 25/08 CS 5633 Analysis of Algorithms 17

Trick 1 adapted to trees

- $\operatorname{UNION}(x, y)$ can use a simple concatenation strategy: Make root Find-SET(y) a child of root $\operatorname{Find}-\operatorname{Set}(x)$.
$\Rightarrow \operatorname{Find}-\operatorname{SET}(y)=\operatorname{Find}-\operatorname{SET}(x)$.
- Adapt Trick 1 to this context:

Union-by-weight:
Merge tree with smaller weight into tree with larger weight.

- Variant of Trick 1 (see book):

Union-by-rank:
rank of a tree $=$ its height
3/25/08 CS 5633 Analysis of Algorithms

Trick 1 adapted to trees
 (union-by-weight)

- Height of tree is logarithmic in weight, because:
- Induction on n
- Height of a tree T is determined by the two subtrees T_{1}, T_{2} that T has been united from.
- Inductively the heights of T_{1}, T_{2} are the logs of their weights.
- If T_{1} and T_{2} have different heights:
$\operatorname{height}(T)=\max \left(\operatorname{height}\left(T_{1}\right), \operatorname{height}\left(T_{2}\right)\right)$.
$=\max \left(\log \operatorname{weight}\left(T_{1}\right), \log \operatorname{weight}\left(T_{2}\right)\right)$
$<\log$ weight (T)
- If T_{1} and T_{2} have the same heights:
(Assume $2 \leq$ weight $\left(T_{1}\right)<$ weight $\left(T_{2}\right)$)
$\operatorname{height}(T)=\operatorname{height}\left(T_{1}\right)+1 \leq 2^{*} \log \operatorname{weight}\left(T_{1}\right)$
$\leq \log$ weight (T)
 3/2508 CS 5633 Analysis of Algorithms $1 \mathrm{O}(m \log n)$. 19

Trick 2: Path compression

When we execute a Find-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.
Cost of Find-SET(x) is still Θ (depth $[x])$.

Trick 2: Path compression

When we execute a Find-Set operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

Cost of Find-Set (x) is still Θ (depth $[x]$).

$$
\text { Find-Set }\left(y_{2}\right)
$$

Trick 2: Path compression

- Note that $\operatorname{UNION}(x, y)$ first calls Find-SET(x) and FIND-SET(y). Therefore path compression also affects UNION operations.

Analysis of Tricks 1 + 2 for disjoint-set forests

Theorem: In general, total cost is $\mathrm{O}(m \alpha(n))$.
(long, tricky proof - see Section 21.4 of CLRS)

Application:
 Dynamic connectivity

Suppose a graph is given to us incrementally by

- Add-VERTEX(v)
- $\operatorname{Add}-\operatorname{Edge}(u, v)$
and we want to support connectivity queries:
- Connected (u, v) :

Are u and v in the same connected component?
For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.
3/25/08

Application:
 Dynamic connectivity

Sets of vertices represent connected components.
Suppose a graph is given to us incrementally by

- $\operatorname{Add}-\operatorname{Vertex}(v): \operatorname{Make}-\operatorname{Set}(v)$
- $\operatorname{Add}-E d g e(u, v):$ if not $\operatorname{Connected}(u, v)$ then $\operatorname{Union}(v, w)$
and we want to support connectivity queries:
- $\operatorname{Connected}(u, v):: \operatorname{Find}-\operatorname{Set}(u)=\operatorname{Find}-\operatorname{Set}(v)$

Are u and v in the same connected component?
For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.
3/25/08
CS 5633 Analysis of Algorithms

