

CS 5633 -- Spring 2008

Union-Find Data Structures

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

3/25/08

CS 5633 Analysis of Algorithms

Disjoint-set data structure (Union-Find)

Problem:

- Maintain a dynamic collection of *pairwise-disjoint*
- sets $S = \{S_1, S_2, ..., S_r\}$. Each set S_i has one element distinguished as the representative element, $rep[S_i]$.
- Must support 3 operations:
 - MAKE-SET(x): adds new set $\{x\}$ to S with $rep[\{x\}] = x$ (for any $x \notin S_i$ for all i)
 - Union(x, y): replaces sets S_x , S_y with $S_x \cup S_y$ in S (for any x, y in distinct sets S_x , S_y)
 - FIND-SET(x): returns representative $rep[S_x]$ of set S_x containing element x

3/25/08

CS 5633 Analysis of Algorithms

Union-Find Example

$$S = \{\}$$

$$MAKE-SET(2)$$

$$MAKE-SET(3)$$

$$MAKE-SET(4)$$

$$FIND-SET(4) = 4$$

$$UNION(2, 4)$$

$$FIND-SET(4) = 2$$

$$MAKE-SET(5)$$

$$S = \{\{2\}, \{3\}\}\}$$

$$S = \{\{2\}, \{3\}\}, \{4\}\}$$

$$S = \{\{2\}, \{4\}\}, \{3\}\}, \{5\}\}$$

$$S = \{\{2\}, \{4\}\}, \{3\}\}, \{5\}\}$$

$$S = \{\{2\}, \{4\}\}, \{3\}\}, \{5\}\}$$

3/25/08 CS 5633 Analysis of Algorithms

Disjoint-set data structure (Union-Find) II

- In all operations pointers to the elements x, yin the data structure are given.
- Hence, we do not need to first search for the element in the data structure.
- Let *n* denote the overall number of elements (equivalently, the number of MAKE-SET operations).

3/25/08

3

CS 5633 Analysis of Algorithms

Simple linked-list solution

Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as an (unordered) doubly linked list. Define representative element $rep[S_i]$ to be the front of the list, x_1 .

• MAKE-SET(x) initializes x as a lone node.

• FIND-SET(x) walks left in the list containing x until it reaches the front of the list.

• UNION(x, y) calls FIND-SET on y, finds the last element of list x, and concatenates both lists, leaving rep. as FIND-SET[x].

3/25/08 CS 5633 Analysis of Algorithms

Simple balanced-tree solution

maintain how?

Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as a balanced tree (ignoring keys). Define representative element $rep[S_i]$ to be the root of the tree.

• MAKE-SET(x) initializes x $\Theta(1)$ as a lone node.

 $S_i = \{x_1, x_2, x_3, x_4, x_5\}$

• FIND-SET(x) walks up the tree

 $\Theta(\log n)$ containing x until reaching root. • UNION(x, y) calls FIND-SET on

 $\Theta(\log n)$ y, finds a leaf of x and concatenates both trees. changing rep. of ν 3/25/08

CS 5633 Analysis of Algorithms

 $\Theta(n)$

 $\Theta(n)$

Plan of attack

- We will build a simple disjoint-union data structure that, in an amortized sense, performs significantly better than $\Theta(\log n)$ per op., even better than $\Theta(\log \log n)$, $\Theta(\log \log \log n)$, ..., but not quite $\Theta(1)$.
- To reach this goal, we will introduce two key *tricks*. Each trick converts a trivial $\Theta(n)$ solution into a simple $\Theta(\log n)$ amortized solution. Together, the two tricks yield a much better solution.
- First trick arises in an augmented linked list. Second trick arises in a tree structure.

3/25/08

CS 5633 Analysis of Algorithms

Augmented linked-list solution

Store $S_i = \{x_1, x_2, ..., x_k\}$ as unordered doubly linked list. **Augmentation:** Each element x_i also stores pointer $rep[x_i]$ to $rep[S_i]$ (which is the front of the list, x_1).

- FIND-SET(x) returns rep[x].
- UNION(x, y) concatenates lists containing x and y and updates the *rep* pointers for all elements in the list containing ν .

3/25/08

 $-\Theta(n)$

 $-\Theta(1)$

Alternative concatenation

UNION(x, y) could instead

- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.

Trick 1: Smaller into larger

(weighted-union heuristic)

To save work, concatenate smaller list onto the end of the larger list. Cost = Θ (length of smaller list). Augment list to store its *weight* (# elements).

- Let *n* denote the overall number of elements (equivalently, the number of MAKE-SET operations).
- Let *m* denote the total number of operations.
- Let *f* denote the number of FIND-SET operations.

Theorem: Cost of all Union's is $O(n \log n)$.

Corollary: Total cost is $O(m + n \log n)$.

3/25/08

CS 5633 Analysis of Algorithms

Alternative concatenation

UNION(x, y) could instead

- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.

Analysis of Trick 1

(weighted-union heuristic)

Theorem: Total cost of Union's is $O(n \log n)$.

Proof. • Monitor an element x and set S_x containing it.

- After initial MAKE-SET(x), weight[S_x] = 1.
- Each time S_r is united with S_v :
 - if $weight[\hat{S}_n] \ge weight[S_n]$:
 - pay 1 to update rep[x], and
 - $-weight[S_x]$ at least doubles (increases by weight[S_y]).
 - if $weight[\hat{S_v}] < weight[S_x]$:
 - pay nothing, and
 - $-weight[S_x]$ only increases.

Thus pay $\leq \log n$ for x.

3/25/08

15

CS 5633 Analysis of Algorithms

16

Disjoint set forest: Representing sets as trees

Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as an unordered, potentially unbalanced, not necessarily binary tree, storing only *parent* pointers. $rep[S_i]$ is the tree root.

- Make-Set(x) initializes x $-\Theta(1)$ as a lone node
- FIND-SET(x) walks up the tree containing x until it reaches the root. $-\Theta(depth[x])$
- Union(x, y) calls Find-Set twice and concatenates the trees containing x and y... – $\Theta(depth[x])$

3/25/08

CS 5633 Analysis of Algorithms

19

Trick 1 adapted to trees

(union-by-weight)

- Height of tree is logarithmic in weight, because:
 - Induction on *n*
 - Height of a tree *T* is determined by the two subtrees T_1 , T_2 that T has been united from.
 - Inductively the heights of T_1 , T_2 are the logs of their weights.
 - If T_1 and T_2 have different heights: $height(\bar{T}) = max(height(T_1), height(T_2))$ = $\max(\log \operatorname{weight}(T_1), \log \operatorname{weight}(T_2))$ $< \log weight(T)$
 - If T_1 and T_2 have the same heights:

(Assume $2 \le \text{weight}(T_1) \le \text{weight}(T_2)$)

 $height(T) = height(T_1) + 1 \le 2* log weight(T_1)$

 \leq log weight(T)
• Thus the total cost of any m operations is $O(m \log n)$.

Trick 2: Path compression

When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root

Cost of FIND-SET(x) is still $\Theta(depth[x])$.

3/25/08 CS 5633 Analysis of Algorithms

20

Trick 2: Path compression

• Note that UNION(*x*, *y*) first calls FIND-SET(*x*) and FIND-SET(*y*). Therefore path compression also affects UNION operations.

Analysis of Trick 2 alone

Theorem: Total cost of FIND-SET's is $O(m \log n)$. *Proof:* By amortization. Omitted.

24

3/25/08

CS 5633 Analysis of Algorithms

23

3/25/08 CS 5633 Analysis of Algorithms

Ackermann's function A, and it's "inverse" α

Define
$$A_k(j) = \begin{cases} j+1 & \text{if } k = 0, \\ A_{k-1}^{(j+1)}(j) & \text{if } k \ge 1. \end{cases}$$
 - iterate $j+1$ times

$$A_{0}(j) = j + 1 A_{1}(j) \sim 2j A_{2}(j) \sim 2j 2^{j} > 2^{j} A_{2}(1) = 7 A_{3}(j) > 2 A_{3}(j) > 2 A_{4}(1) = 2047 A_{3}(1) = 2047 A_{4}(i) is a lot bigger A_{4}(1) > 2 A_{5}(1) = 2 A_{5$$

Define
$$\alpha(n) = \min_{CS \text{ 5633 Analysis of Algorithms}} \{k : A_k(1) \ge n\} \le 4 \text{ for practical } n.$$

Analysis of Tricks 1 + 2 for disjoint-set forests

Theorem: In general, total cost is $O(m \alpha(n))$. (long, tricky proof – see Section 21.4 of CLRS)

3/25/08

CS 5633 Analysis of Algorithms

Application: **Dynamic connectivity**

Suppose a graph is given to us *incrementally* by

- ADD-VERTEX(ν)
- ADD-EDGE(u, v)

and we want to support *connectivity* queries:

• CONNECTED(u, v):

Are *u* and *v* in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.

3/25/08

Application: Dynamic connectivity

Sets of vertices represent connected components. Suppose a graph is given to us *incrementally* by

- ADD-VERTEX(v): MAKE-SET(v)
- ADD-EDGE(u, v): **if** not Connected(u, v) then UNION(v, w)

and we want to support *connectivity* queries:

• CONNECTED(u, v): : FIND-SET(u) = FIND-SET(v)Are *u* and *v* in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.

3/25/08

27

28

26