

2D range trees

Idea: In primary 1D range tree of *x*-coordinate, every node stores a *secondary* 1D range tree based on *y*-coordinate for all points in the subtree of the node. Recursively search within each.

• 2D range trees

Store a *primary* 1D range tree for all the points based on *x*-coordinate.

Thus in $O(\log n)$ time we can find $O(\log n)$ subtrees representing the points with proper *x*-coordinate. How to restrict to points with proper *y*-coordinate?

Analysis of 2D range trees

Query time: In $O(\log^2 n) = O((\log n)^2)$ time, we can represent answer to range query by $O(\log^2 n)$ subtrees. Total cost for reporting *k* points: $O(k + (\log n)^2)$.

Space: The secondary trees at each level of the primary tree together store a copy of the points. Also, each point is present in each secondary tree along the path from the leaf to the root. Either way, we obtain that the space is $O(n \log n)$.

Preprocessing time: O(*n* log *n*)

d-dimensional range trees

Each node of the secondary *y*-structure stores a tertiary *z*-structure representing the points in the subtree rooted at the node, etc.

Query time: $O(k + \log^d n)$ to report k points. **Space:** $O(n \log^{d-1} n)$ **Preprocessing time:** $O(n \log^{d-1} n)$

Best data structure to date: Query time: $O(k + \log^{d-1} n)$ to report k points. Space: O($n (\log n / \log \log n)^{d-1}$) **Preprocessing time:** $O(n \log^{d-1} n)$

2/28/08

CS 5633 Analysis of Algorithms

17