
CS 5633 Analysis of Algorithms 12/28/08

CS 5633 -- Spring 2008

Range Trees
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

CS 5633 Analysis of Algorithms 22/28/08

Orthogonal range searching

Input: n points in d dimensions
• E.g., representing a database of n records

each with d numeric fields
Query: Axis-aligned box (in 2D, a rectangle)

• Report on the points inside the box:
• Are there any points?
• How many are there?
• List the points.

CS 5633 Analysis of Algorithms 32/28/08

Orthogonal range searching

Input: n points in d dimensions
Query: Axis-aligned box (in 2D, a rectangle)

• Report on the points inside the box
Goal: Preprocess points into a data structure

to support fast queries
• Primary goal: Static data structure
• In 1D, we will also obtain a
dynamic data structure
supporting insert and delete

CS 5633 Analysis of Algorithms 42/28/08

1D range searching
In 1D, the query is an interval:

First solution:
• Sort the points and store them in an array

• Solve query by binary search on endpoints.
• Obtain a static structure that can list

k answers in a query in O(k + log n) time.
Goal: Obtain a dynamic structure that can list
k answers in a query in O(k + log n) time.

CS 5633 Analysis of Algorithms 52/28/08

1D range searching
In 1D, the query is an interval:

New solution that extends to higher dimensions:
• Balanced binary search tree

• New organization principle:
Store points in the leaves of the tree.

• Internal nodes store copies of the leaves
to satisfy binary search property:

• Node x stores in key[x] the maximum
key of any leaf in the left subtree of x.

CS 5633 Analysis of Algorithms 62/28/08

Example of a 1D range tree

11

66 88 1212 1414

1717

2626 3535 4141 4242

4343

5959 6161

key[x] is the maximum key of any leaf in the left subtree of x.

CS 5633 Analysis of Algorithms 72/28/08

Example of a 1D range tree

121211

66 88 1212 1414

1717

2626 3535 4141 4242

4343

5959 6161

66 2626 4141 5959

11 1414 3535 4343

424288

1717
xx

≤ x > x

key[x] is the maximum key of any leaf in the left subtree of x.
CS 5633 Analysis of Algorithms 82/28/08

1212

88 1212 1414

1717

2626 3535 4141

2626

1414

Example of a 1D range query

11

66 4242

4343

5959 6161

66 4141 5959

11

1212

88 1212 1414

1717

2626 3535 4141

2626

1414 3535 4343

424288

1717

RANGE-QUERY([7, 41])

xx

≤ x > x

CS 5633 Analysis of Algorithms 92/28/08

General 1D range query
root

split node

CS 5633 Analysis of Algorithms 102/28/08

Pseudocode, part 1:
Find the split node

1D-RANGE-QUERY(T, [x1, x2])
w ← root[T]
while w is not a leaf and (x2 ≤ key[w] or key[w] < x1)

do if x2 ≤ key[w]
then w ← left[w]
else w ← right[w]

// w is now the split node
[traverse left and right from w and report relevant subtrees]

CS 5633 Analysis of Algorithms 112/28/08

Pseudocode, part 2: Traverse
left and right from split node

1D-RANGE-QUERY(T, [x1, x2])
[find the split node]
// w is now the split node
if w is a leaf
then output the leaf w if x1 ≤ key[w] ≤ x2
else v ← left[w] // Left traversal

while v is not a leaf
do if x1 ≤ key[v]

then output the subtree rooted at right[v]
v ← left[v]

else v ← right[v]
output the leaf v if x1 ≤ key[v] ≤ x2
[symmetrically for right traversal]

w

CS 5633 Analysis of Algorithms 122/28/08

Analysis of 1D-RANGE-QUERY

Query time: Answer to range query represented
by O(log n) subtrees found in O(log n) time.
Thus:

• Can test for points in interval in O(log n) time.
• Can report all k points in interval in

O(k + log n) time.
• Can count points in interval in

O(log n) time (exercise)
Space: O(n)
Preprocessing time: O(n log n)

CS 5633 Analysis of Algorithms 132/28/08

2D range trees

CS 5633 Analysis of Algorithms 142/28/08

Store a primary 1D range tree for all the points
based on x-coordinate.

2D range trees

Thus in O(log n) time we can find O(log n) subtrees
representing the points with proper x-coordinate.
How to restrict to points with proper y-coordinate?

CS 5633 Analysis of Algorithms 152/28/08

2D range trees
Idea: In primary 1D range tree of x-coordinate,
every node stores a secondary 1D range tree
based on y-coordinate for all points in the subtree
of the node. Recursively search within each.

CS 5633 Analysis of Algorithms 162/28/08

Analysis of 2D range trees
Query time: In O(log2 n) = O((log n)2) time, we can
represent answer to range query by O(log2 n) subtrees.
Total cost for reporting k points: O(k + (log n)2).

Preprocessing time: O(n log n)

Space: The secondary trees at each level of the
primary tree together store a copy of the points.
Also, each point is present in each secondary
tree along the path from the leaf to the root.
Either way, we obtain that the space is O(n log n).

CS 5633 Analysis of Algorithms 172/28/08

d-dimensional range trees

Query time: O(k + logd n) to report k points.
Space: O(n logd – 1 n)
Preprocessing time: O(n logd – 1 n)

Each node of the secondary y-structure stores
a tertiary z-structure representing the points
in the subtree rooted at the node, etc.

Best data structure to date:
Query time: O(k + logd – 1 n) to report k points.
Space: O(n (log n / log log n)d – 1)
Preprocessing time: O(n logd – 1 n)

