

CS 5633 -- Spring 2008

Red-black trees

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

2/14/08

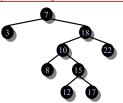
CS 5633 Analysis of Algorithms

Search Trees

• A binary search tree is a binary tree. Each node stores a key. The tree fulfills the **binary search tree property**:

For every node *x* holds:

- $y \le x$, for all y in the subtree left of x
- x < y, for all y in the subtree right of x



2/14/08

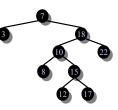
CS 5633 Analysis of Algorithms

ALGORITHMS

Search Trees

Different variants of search trees:

- Balanced search trees (guarantee height of *log n* for *n* elements)
- *k*-ary search trees (such as B-trees, 2-3-4-trees)
- Search trees that store the keys only in the leaves, and store additional split-values in the internal nodes



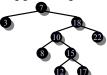
2/14/08 CS 5633 Analysis of Algorithms

ADT Dictionary / Dynamic Set

Abstract data type (ADT) Dictionary (also called Dynamic Set):

A data structure which supports operations

- Insert
- Delete
- Find



Using **balanced binary search trees** we can implement a dictionary data structure such that each operation takes $O(\log n)$ time.

2/14/08

CS 5633 Analysis of Algorithms

Balanced search trees

Balanced search tree: A search-tree data structure for which a height of $O(\log n)$ is guaranteed when implementing a dynamic set of n items.

- AVL trees
- 2-3 trees

Examples:

- 2-3-4 trees
- B-trees
- Red-black trees

2/14/08

CS 5633 Analysis of Algorithms

5

Red-black trees

This data structure requires an extra onebit color field in each node.

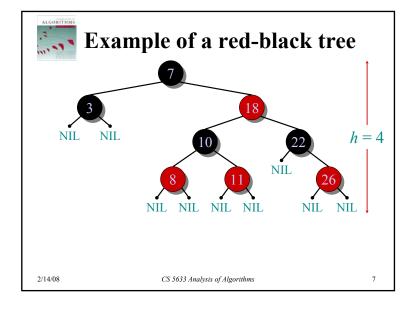
Red-black properties:

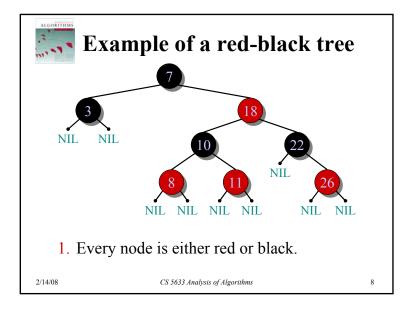
- 1. Every node is either red or black.
- 2. The root is black.
- 3. The leaves (NIL's) are black.
- 4. If a node is red, then both its children are black.
- 5. All simple paths from any node *x*, excluding *x*, to a descendant leaf have the same number of black nodes = black-height(*x*).

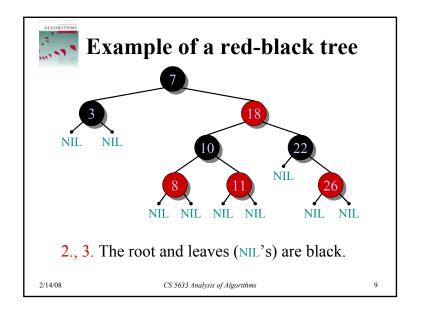
2/14/08

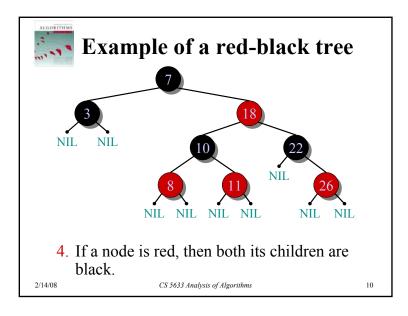
CS 5633 Analysis of Algorithms

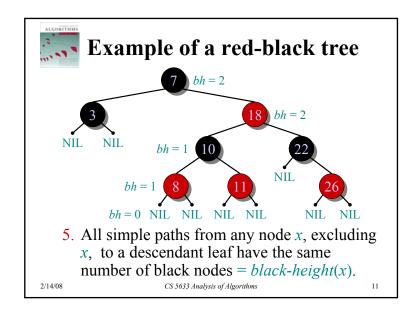
.

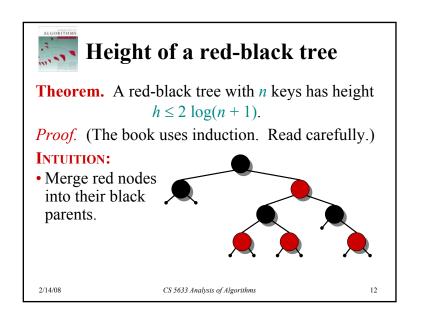












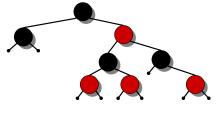
Height of a red-black tree

Theorem. A red-black tree with n keys has height $h \le 2 \log(n+1)$.

Proof. (The book uses induction. Read carefully.)

Intuition:

 Merge red nodes into their black parents.



13

15

2/14/08

CS 5633 Analysis of Algorithms

......

Height of a red-black tree

Theorem. A red-black tree with n keys has height $h \le 2 \log(n+1)$.

Proof. (The book uses induction. Read carefully.)

Intuition:

 Merge red nodes into their black parents.

2/14/08

CS 5633 Analysis of Algorithms

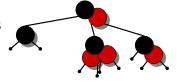
Height of a red-black tree

Theorem. A red-black tree with n keys has height $h \le 2 \log(n+1)$.

Proof. (The book uses induction. Read carefully.)

Intuition:

 Merge red nodes into their black parents.



2/14/08

CS 5633 Analysis of Algorithms

ALGORITHMS

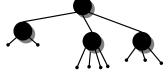
Height of a red-black tree

Theorem. A red-black tree with n keys has height $h \le 2 \log(n+1)$.

Proof. (The book uses induction. Read carefully.)

Intuition:

 Merge red nodes into their black parents.



2/14/08

CS 5633 Analysis of Algorithms

Height of a red-black tree

Theorem. A red-black tree with n keys has height $h \le 2 \log(n+1)$.

Proof. (The book uses induction. Read carefully.)

Intuition:

 Merge red nodes into their black parents.

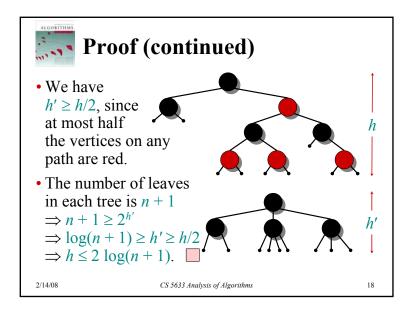
- This process produces a tree in which each node has 2, 3, or 4 children.
- The 2-3-4 tree has uniform depth h' of leaves.

2/14/08

CS 5633 Analysis of Algorithms

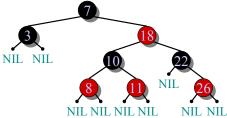
17

19



Query operations

Corollary. The queries SEARCH, MIN, MAX, SUCCESSOR, and PREDECESSOR all run in $O(\log n)$ time on a red-black tree with n nodes.



2/14/08 CS 5633 Analysis of Algorithms

ALGORITHMS

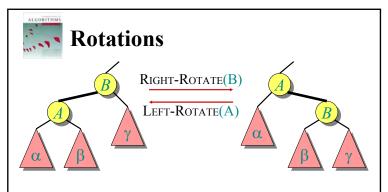
Modifying operations

The operations Insert and Delete cause modifications to the red-black tree:

- 1. the operation itself,
- 2. color changes,
- 3. restructuring the links of the tree via "rotations".

2/14/08

CS 5633 Analysis of Algorithms



- Rotations maintain the inorder ordering of keys: $a \in \alpha, b \in \beta, c \in \gamma \implies a \le A \le b \le B \le c$.
- Rotations maintain the binary search tree property
- A rotation can be performed in O(1) time.

2/14/08 CS 5633 Analysis of Algorithms

Red-black trees

This data structure requires an extra onebit color field in each node.

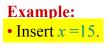
Red-black properties:

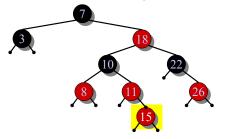
- 1. Every node is either red or black.
- 2. The root is black.
- 3. The leaves (NIL's) are black.
- 4. If a node is red, then both its children are black.
- 5. All simple paths from any node x, excluding x, to a descendant leaf have the same number of black nodes = black-height(x).

2/14/08 CS 5633 Analysis of Algorithms 22

Insertion into a red-black tree

IDEA: Insert *x* in tree. Color *x* red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.





2/14/08 CS 5633 Analysis of Algorithms

23

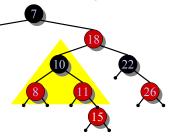
21

Insertion into a red-black tree

IDEA: Insert *x* in tree. Color *x* red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert x = 15.
- Recolor, moving the violation up the tree.



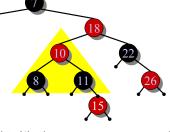
2/14/08 CS 5633 Analysis of Algorithms

Insertion into a red-black tree

IDEA: Insert *x* in tree. Color *x* red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert x = 15.
- Recolor, moving the violation up the tree.



2/14/08

CS 5633 Analysis of Algorithms

5

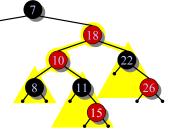
ALGORITHMS

■ Insertion into a red-black tree

IDEA: Insert *x* in tree. Color *x* red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).



2/14/08 CS 5633 Analysis of Algorithms

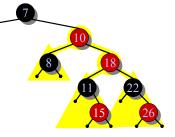
26

Insertion into a red-black tree

IDEA: Insert *x* in tree. Color *x* red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).



2/14/08 CS 5633 Analysis of Algorithms

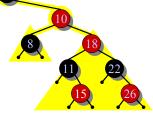
Insertion into a red-black tree

IDEA: Insert *x* in tree. Color *x* red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).
- Left-Rotate(7)

2/14/08 CS 5633 Analysis of Algorithms



Insertion into a red-black tree

IDEA: Insert *x* in tree. Color *x* red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).
- Left-Rotate(7)

2/14/08

CS 5633 Analysis of Algorithms

7 18 22 26

29

31

Insertion into a red-black tree

IDEA: Insert *x* in tree. Color *x* red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE (18).
- Left-Rotate(7) and recolor.

2/14/08 CS 5633 Analysis of Algorithms

30

■ Insertion into a red-black tree

IDEA: Insert *x* in tree. Color *x* red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).
- Left-Rotate(7) and recolor.

2/14/08

CS 5633 Analysis of Algorithm

Pseudocode

```
RB-INSERT(T, x)

TREE-INSERT(T, x)

color[x] \leftarrow \text{RED} \quad \triangleleft \text{ only RB property 4 can be violated}

while x \neq root[T] and color[p[x]] = \text{RED}

do if p[x] = left[p[p[x]]

then y \leftarrow right[p[p[x]]] \quad \triangleleft y = \text{aunt/uncle of } x

if color[y] = \text{RED}

then \langle \text{Case 1} \rangle

else if x = right[p[x]]

then \langle \text{Case 2} \rangle \quad \triangleleft \text{Case 2 falls into Case 3}

\langle \text{Case 3} \rangle

else \langle \text{"then" clause with "} left" \text{ and "} right" \text{ swapped} \rangle

color[root[T]] \leftarrow \text{BLACK}
```

2/14/08

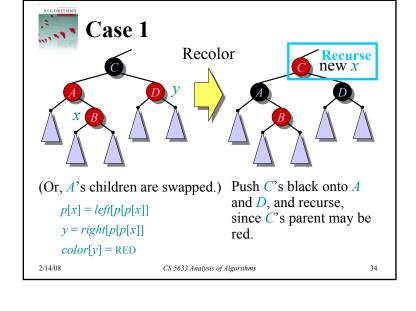
CS 5633 Analysis of Algorithms

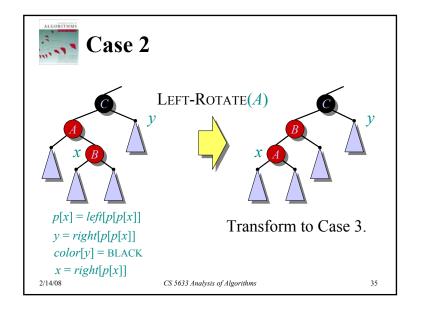
Graphical notation

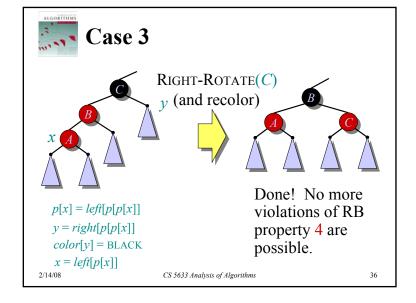
Let \(\int \) denote a subtree with a black root.

All \triangle 's have the same black-height.

2/14/08 CS 5633 Analysis of Algorithms







Analysis

- Go up the tree performing Case 1, which only recolors nodes.
- If Case 2 or Case 3 occurs, perform 1 or 2 rotations, and terminate.

Running time: $O(\log n)$ with O(1) rotations.

RB-DELETE — same asymptotic running time and number of rotations as RB-INSERT (see textbook).

2/14/08

CS 5633 Analysis of Algorithms

