1/14/08

Schedule (subject to change)

Date	Material
Tu 1/15	Analyzing algorithms (Ch. 2.2)
	Best case and worst case runtimes; insertion sort, incremental algorithm
Th $1/17$	Asymptotic notation (Ch. 3, Ch. A)
	O, Ω, Θ, o , limit-theorem; runtime for code-snippets
	Homework 1 assigned
Tu $1/22$	Heapsort (Ch. 6)
	Abstract data types (ADT), priority queue, heap, heapsort, linear-time buildheap
Th $1/24$	Divide-and-conquer (Ch. 2.3) and recurrences (Ch. 4.1, 4.2)
	Divide-and-conquer, merge sort, binary search; Runtime recurrences. Solving re-
	currences with recursion tree; solving the recurrence with the substitution method
	(induction)
	Homework 1 due; homework 2 assigned
Tu 1/29	Master theorem (Ch. 4.3), more divide-and-conquer (Ch. 31.6 pages 879–
	880; Ch. 30 pages 822–824; 28.2)
	Use of master theorem to solve recurrences. Repeated squaring for exponentiation,
TD1 1/01	Fibonacci numbers, polynomial multiplication, Strassen's matrix multiplication.
Th $1/31$	Randomized algorithms (Ch. 5.1–5.3), random variables and expected $(Ch = C n)$
	values (Ch. C.3)
	Hiring problem; Expected runtime analysis. Random variables, expected value.
The 9/5	Homework 2 due; homework 3 assigned
Tu 2/5	Quicksort (Ch. 7.1–7.4)
Th 2/7	Quicksort, best-case and worst-case runtimes, randomized quicksort.
111 2/1	Sorting (Ch. 8.1, 8.2, 8.3) Decision trees, lower $\Omega(n \log n)$ bound for comparison sorts, counting sort, radix sort
	Homework 3 due; homework 4 assigned
Tu 2/12	Order statistics (Ch. 9)
1u 2/12	Order statistics (Gin <i>i</i>) Order statistics (find <i>i</i> -th smallest element); Randomized selection, deterministic
	selection in linear time
Th 2/14	Red-black trees (Ch. 13.1, 13.2, 13.3)
	Red-black tree property, rotations, insertion; abstract data types, ADT dictionary
	Homework 4 due
Tu 2/19	
	Material until $2/12$ (inclusive)
Th $2/21$	B-trees (Ch. 18.1, 18.2)
,	k-ary search trees, B-tree def., height, insertion
	Homework 5 assigned
Tu 2/26	Augmenting Data Structures (Ch. 14)
	Augmenting red-black trees; Dynamic order statistics, interval trees
Th $2/28$	Range Trees
	Range trees, in 2 dimensions and in d dimensions; preprocessing time, query time.
	Homework 5 due; homework 6 assigned

Date	Material
Tu 3/4	Dynamic programming (Ch. 15.2, 15.3, 15.4)
,	Fibonacci, binomial coefficient, LCS: fill table, then construct solution from the
	table.
Th 3/6	Dynamic programming (Ch. 15.2, 15.3, 15.4)
,	Matrix chain multiplication; general outline of dynamic programming: Optimal sub-
	structure (recurrence), overlapping subproblems, fill table bottom-up or by memo-
	ization.
	Homework 6 due; homework 7 assigned
Tu 3/11	Greedy algorithms (Ch. 16.2 pages 380 middle – 384; problem 16-1 on
	page 402; Ch. 16.3)
	Greedy algorithms (greedy-choice property, optimal substructure). Making change,
	fractional knapsack. Huffman codes
Th $3/13$	Amortized analysis (Ch. 17.1, 17.2, 17.4)
/	Aggregate analysis (total runtime of n operations), accounting method (prepay for
	later operations); binary counter, dynamic tables
	Homework 7 due; homework 8 assigned
Tu 3/25	Union-Find (Ch. 21.1, 21.2, 21.3)
/	Operations, list implementation, tree implementation, union-by-weight / union-by
	rank, path compression. Ackermann function, and inverse Ackermann function α .
Th $3/27$	Elementary Graph Algorithms (Ch. 22.1–22.4)
/	Representations of graphs, breadth-first search (BFS), depth-first search (DFS),
	topological sort
	Homework 8 due
Tu 4/1	Test 2
10 1/1	Material from $2/14$ until $3/25$ (inclusive)
Th $4/3$	Minimum Spanning Trees (Ch. 23)
111 1/0	Prim (grows single tree), Kruskal (grows forest; uses union/find data structure)
	Homework 9 assigned
Tu 4/8	Single-source shortest paths (Ch. 24 without 24.4)
14 1/0	Optimal substructure, triangle inequality, relaxation step; Dijkstra (only for non-
	negative edge weights), predecessor tree (shortest path tree); Bellman-Ford, detec-
	tion of negative-weight cycles; Shortest paths in a DAG
Th 4/10	All-Pairs Shortest Paths (Ch. 25.2)
	Dynamic programming: Floyd-Warshall
	Homework 9 due; homework 10 assigned
Tu 4/15	P and NP (Ch. 34)
/	Decision problems, definition of classes P and NP, polynomial-time reductions
Th $4/17$	P and NP (Ch. 34)
,	NP-hardness, NP-completeness; Show that problems are NP-complete by reducing
	from other problems; TSP, Clique, Independent Set, Vertex Cover, Hamilton Path,
	Hamilton Circuit
	Homework 10 due; homework 11 assigned
Tu 4/22	Approximation Algorithms (Ch. 35.1 and 35.2)
,	Constant factor approximation; Vertex cover; MST for Euclidean TSP
Th $4/24$	Maximum Flow (Ch. 26)
	Flow networks; Max-flow min-cut, augmenting path, residual network
	Homework 11 due
Tu 4/29	Maximum Flow (Ch. 26)
	Ford-Fulkerson, Edmonds-Karp

The comprehensive final exam will be on Tuesday May 6th, 5pm - 7:30pm.