CS 5633 Analysis of Algorithms - Spring 08
1/17/08

1. Homework

Due 1/24/08 before class

1. Code snippets (6 points)

For each of the two code snippets below give their Θ-runtime depending on n. Justify your answers. (Hint: Analyze one loop at a time, and put it together in the end.)
(a) (3 points)

```
for(i=n; i>=1; i=i/3){
        for(j=1; j<=n; j=j*3){
            for(k=1; k<=n; k=k*2) {
                print(" ");
            }
        }
}
```

(b) (3 points)

```
for(i=n; i>=1; i=i-2){
    print(" ");
}
for(i=n; i>=1; i=i-1){
    for(j=n; j>=1; j=j-i){
        print(" ");
    }
}
```

2. Θ (3 points)

Prove using the definition of Θ that $n^{3}-2 n^{2}+3 n-5 \in \Theta\left(n^{3}\right)$.
3. Transitivity (4 points)

Show using the definitions of big-Oh and Θ :
(a) If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$.
(b) If $f(n) \in \Theta(g(n))$ and $g(n) \in \Theta(h(n))$ then $f(n) \in \Theta(h(n))$.

4. Big-Oh ranking (14 points)

Rank the following functions by order of growth, i.e., find an arrangement f_{1}, f_{2}, \ldots of the functions satisfying $f_{1} \in O\left(f_{2}\right), f_{2} \in O\left(f_{3}\right), \ldots$. Partition your list into equivalence classes such that f and g are in the same class if and only if $f \in \Theta(g)$. For every two functions f_{i}, f_{j} that are adjacent in your ordering, prove shortly why $f_{i} \in O\left(f_{j}\right)$ holds. And if f and g are in the same class, prove that $f \in \Theta(g)$.
$n^{2}, n^{3}, \log \log n, 3^{n}, \log ^{2} n, \sqrt{n}, n^{2} \sqrt{n}+42 n, \log n, 1, n^{n}, n, n \log n, 3^{n+1}, 4^{n}, 4^{\log n}$
As a reminder: $\log ^{2} n=(\log n)^{2}$ and $\log \log n=\log (\log n)$. Bear in mind that in some cases it might be useful to show $f(n) \in o(g(n))$, since $o(g(n)) \subset O(g(n))$. If you try to show that $f(n) \in o(g(n))$, then it might be useful to apply the rule of l'Hôpital which states that

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

if the limits exist; where $f^{\prime}(n)$ and $g^{\prime}(n)$ are the derivatives of f and g, respectively.

