1/17/08

1. Homework

Due 1/24/08 before class

1. Code snippets (6 points)

For each of the two code snippets below give their Θ -runtime depending on n. Justify your answers. (Hint: Analyze one loop at a time, and put it together in the end.)

(a) (3 points)

```
for(i=n; i>=1; i=i/3){
  for(j=1; j<=n; j=j*3){
    for(k=1; k<=n; k=k*2){
      print(" ");
    }
}</pre>
```

(b) **(3 points)**

```
for(i=n; i>=1; i=i-2){
   print(" ");
}

for(i=n; i>=1; i=i-1){
   for(j=n; j>=1; j=j-i){
     print(" ");
   }
}
```

2. Θ (3 points)

Prove using the definition of Θ that $n^3 - 2n^2 + 3n - 5 \in \Theta(n^3)$.

3. Transitivity (4 points)

Show using the definitions of big-Oh and Θ :

- (a) If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$.
- (b) If $f(n) \in \Theta(g(n))$ and $g(n) \in \Theta(h(n))$ then $f(n) \in \Theta(h(n))$.

4. Big-Oh ranking (14 points)

Rank the following functions by order of growth, i.e., find an arrangement $f_1, f_2, ...$ of the functions satisfying $f_1 \in O(f_2), f_2 \in O(f_3),...$. Partition your list into equivalence classes such that f and g are in the same class if and only if $f \in \Theta(g)$. For every two functions f_i, f_j that are adjacent in your ordering, prove shortly why $f_i \in O(f_j)$ holds. And if f and g are in the same class, prove that $f \in \Theta(g)$.

$$n^2$$
, n^3 , $\log \log n$, 3^n , $\log^2 n$, \sqrt{n} , $n^2\sqrt{n}+42n$, $\log n$, 1 , n^n , n , $n \log n$, 3^{n+1} , 4^n , $4^{\log n}$

As a reminder: $\log^2 n = (\log n)^2$ and $\log \log n = \log(\log n)$. Bear in mind that in some cases it might be useful to show $f(n) \in o(g(n))$, since $o(g(n)) \subset O(g(n))$. If you try to show that $f(n) \in o(g(n))$, then it might be useful to apply the rule of l'Hôpital which states that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

if the limits exist; where f'(n) and g'(n) are the derivatives of f and g, respectively.