Practice test questions

1 Big-Oh - 6 points

Rank the following functions according to their asymptotic order of growth. Additionally, indicate which functions are in Θ of each other. (Just as on the first homework). You do not need to justify your answers.

$$
42, \log _{3} n, n^{n}, n+\log n, \sqrt{n}, \log _{2} n, 1, n!, n, \sqrt[3]{n}, n \log n, n^{3}
$$

2 Master Theorem - 6 points

Solve the following recurrences using the master theorem. Justify your answers shortly.

1. $T(n)=36 T(n / 6)+n^{3}$
2. $T(n)=7 T(n / 2)+\sqrt{n}$

3 Recurrence - 6 points

Consider the following recursive procedure:

```
mystery(n)
    if }n<=1\mathrm{ return 1
    else
        x=mystery(n/3)
        return(x*x*x)
```

1. Set up a runtime recurrence for mystery (n).
2. What does the runtime recurrence solve to? (No justification needed.)

4 Code Snippets - 8 points

For each of the code snippets below give their big-Oh runtime depending on n. Make your bounds AS TIGHT AS POSSIBLE. (No justification needed.)

```
a) for(i=n; i>=1; i=i/2){
        for(j=1; j<=n; j=j+5){
        print("hello");
    }
}
```

b) for $(i=1 ; i * i<=n ; i=i+1)\{$
for $(j=1 ; j<=n ; j=j * 5)\{$ print("hello");
\}
\}

5 Sorting Runtimes - 8 points

Consider the input array

$$
4,5,6, \ldots, n, n+1, n+2, n+3
$$

of n numbers.

1. What is the runtime of running Insertion Sort on this array? (no justification needed)
2. What is the runtime of running Mergesort on this array? (no justification needed)
3. What is the runtime of running Deterministic Quicksort (pivot = first array element) on this array? (no justification needed)
4. What is the expected runtime of running Randomized Quicksort on this array? (no justification needed)

6 Expected Value - 8 points

Consider playing the following game: You roll a fair six-sided die. If a 1 or a 2 comes up you pay $2 \$$, if a 3 or a 4 comes up you pay $1 \$$, and if a 5 or a 6 comes up you get $4 \$$.

1. What is the underlying sample space S ?
2. What is the probability of rolling a 3 ?
3. Define a random variable X that describes the win/loss of the game. (Remember, a random variable is a function of elements in S)
4. Compute the expected value of X.
