CS 5633 -- Spring 2006

Graphs
 Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

… Graphs (review)

Definition. A directed graph (digraph) $G=(V, E)$ is an ordered pair consisting of

- a set V of vertices (singular: vertex),
- a set $E \subseteq V \times V$ of edges.

In an undirected graph $G=(V, E)$, the edge set E consists of unordered pairs of vertices.
In either case, we have $|E|=O\left(|V|^{2}\right)$.
Moreover, if G is connected, then $|E| \geq|V|-1$.
(Review CLRS, Appendix B. 4 and B.5.)
4/4/06
CS 5633 Analysis of Algorithms

Adjacency-matrix representation

The adjacency matrix of a graph $G=(V, E)$, where $V=\{1,2, \ldots, n\}$, is the matrix $A[1 \ldots n, 1 \ldots n]$ given by

$$
A[i, j]= \begin{cases}1 & \text { if }(i, j) \in \mathrm{E} \\ 0 & \text { if }(i, j) \notin \mathrm{E}\end{cases}
$$

4/4/06

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

$\Theta\left(|V|^{2}\right)$ storage \Rightarrow dense representation.

Adjacency-list representation

An adjacency list of a vertex $v \in V$ is the list $\operatorname{Adj}[v]$ of vertices adjacent to v.

For undirected graphs, $|\operatorname{Adj}[v]|=$ degree (v).
For digraphs, $|\operatorname{Adj}[v]|=$ out-degree (v).

Graph Traversal

Let $G=(V, E)$ be a (directed or undirected) graph, given in adjacency list representation.
$|V|=n,|E|=m$
A graph traversal visits every vertex:

- Breadth-first search (BFS)
- Depth-first search (DFS)

Breadth-First Search (BFS)

$\operatorname{BFS}(G=(V, E))$
Unmark all vertices
Choose some starting vertex s
Mark s
queue $Q=s$
tree $T=s$
while Q is non-empty do $v=Q$. dequeue
visit v
for each unmarked w adjacent to v do
Mark w
Q.enqueue (w)

Add edge (v, w) to T

BFS runtime

- Each vertex is unmarked in the beginning $\Rightarrow \mathrm{O}(n)$ time
- Each vertex is marked at most once, enqueued at most once, and therefore dequeued at most once
- The time to process a vertex is proportional to the size of its adjacency list (its degree), since the graph is given in adjacency list representation
$\Rightarrow \mathrm{O}(\mathrm{m})$ time
- Total runtime is $\mathrm{O}(m+n)$

