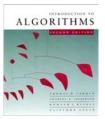


CS 5633 -- Spring 2006



Union-Find Data Structures

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

3/30/06

CS 5633 Analysis of Algorithms

Disjoint-set data structure (Union-Find)

Problem:

- Maintain a dynamic collection of *pairwise-disjoint* sets $S = \{S_1, S_2, ..., S_r\}$. • Each set S_i has one element distinguished as the
- representative element, $rep[S_i]$.
- Must support 3 operations:
 - MAKE-SET(x): adds new set $\{x\}$ to S with $rep[\{x\}] = x$ (for any $x \notin S_i$ for all i)
 - Union(x, y): replaces sets S_r , S_v with $S_r \cup S_v$ in S (for any x, y in distinct sets S_x , S_y)
 - FIND-SET(x): returns representative $rep[S_x]$ of set S_x containing element x

3/30/06

CS 5633 Analysis of Algorithms

Disjoint-set data structure (Union-Find) II

- In all operations the elements x, y are given (as pointers or references for example)
- Hence, we do not need to first search for the element in the data structure.
- Let *n* denote the overall number of elements (equivalently, the number of MAKE-SET operations).

3/30/06

CS 5633 Analysis of Algorithms

3

3/30/06

Simple linked-list solution

Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as an (unordered) doubly linked list. Define representative element $rep[S_i]$ to be the front of the list, x_1 .

• MAKE-SET(x) initializes x as a lone node.

• FIND-SET(x) walks left in the list containing $\Theta(n)$ x until it reaches the front of the list.

• Union(x, y) calls Find-Set on x and y and $\Theta(n)$ concatenates the lists containing x and y, leaving rep. as FIND-SET[x].

Simple balanced-tree solution

maintain how?

Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as a balanced tree (ignoring keys). Define representative element $rep[S_i]$ to be the root of the tree.

- Make-Set(x) initializes x as a lone node.
- $S_i = \{x_1, x_2, x_3, x_4, x_5\}$
- FIND-SET(x) walks up the tree containing x until reaching root.
- $\Theta(\log n)$ UNION(x, y) calls FIND-SET on x and y and concatenates the trees containing x and y, changing rep. of x or y

3/30/06

CS 5633 Analysis of Algorithms

 $rep[S_i]$ x_1

5

ALGORITHMS

Plan of attack

- We will build a simple disjoint-union data structure that, in an **amortized sense**, performs significantly better than $\Theta(\log n)$ per op., even better than $\Theta(\log \log n)$, $\Theta(\log \log \log n)$, ..., but not quite $\Theta(1)$.
- To reach this goal, we will introduce two key *tricks*. Each trick converts a trivial $\Theta(n)$ solution into a simple $\Theta(\log n)$ amortized solution. Together, the two tricks yield a much better solution.
- First trick arises in an augmented linked list. Second trick arises in a tree structure.

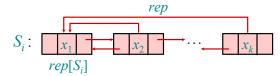
3/30/06

CS 5633 Analysis of Algorithms

ALGORITHMS

Augmented linked-list solution

Store $S_i = \{x_1, x_2, ..., x_k\}$ as unordered doubly linked list. **Augmentation:** Each element x_j also stores pointer $rep[x_j]$ to $rep[S_i]$ (which is the front of the list, x_1).



• FIND-SET(x) returns rep[x].

- $-\Theta(1)$
- UNION(x, y) concatenates lists containing x and y and updates the rep pointers for all elements in the list containing y.

 $-\Theta(n)$

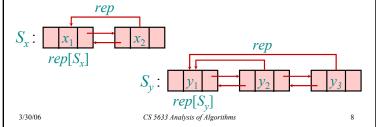
3/30/06 CS 5633 Analysis of Algoria

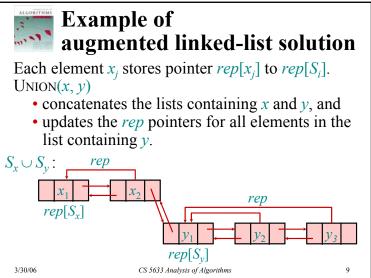
.

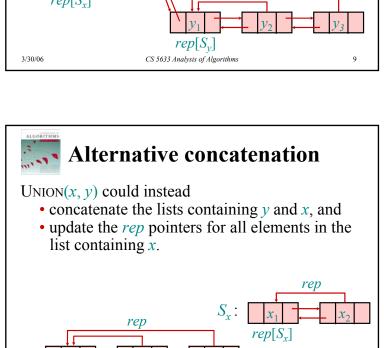
Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$. UNION(x, y)

- concatenates the lists containing x and y, and
- updates the *rep* pointers for all elements in the list containing *y*.



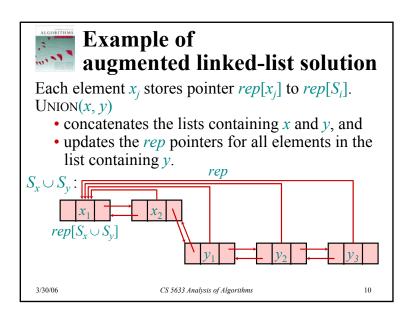


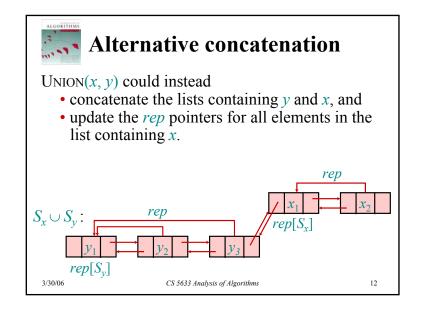


CS 5633 Analysis of Algorithms

11

3/30/06

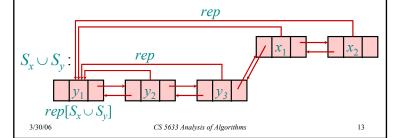




Alternative concatenation

Union(x, y) could instead

- concatenate the lists containing v and x, and
- update the *rep* pointers for all elements in the list containing x.



3/30/06

Analysis of Trick 1

(weighted-union heuristic)

Theorem: Total cost of Union's is $O(n \log n)$.

Proof. • Monitor an element x and set S_x containing it.

- After initial MAKE-SET(x), weight[S_x] = 1.
- Each time S_r is united with S_v , weight $[S_v] \ge weight[S_r]$,
 - pay 1 to update rep[x], and
 - weight[S] at least doubles (increases by weight[S]).
- Each time S_x is united with smaller set S_y ,
 - · pay nothing, and
 - weight[S_n] only increases.

Thus pay $\leq \log n$ for x.

CS 5633 Analysis of Algorithms

Trick 1: Smaller into larger

(weighted-union heuristic)

To save work, concatenate smaller list onto the end of the larger list. $Cost = \Theta(length \ of \ smaller \ list)$. Augment list to store its *weight* (# elements).

- Let *n* denote the overall number of elements (equivalently, the number of MAKE-SET operations).
- Let *m* denote the total number of operations.
- Let f denote the number of FIND-SET operations.

Theorem: Cost of all Union's is $O(n \log n)$. **Corollary:** Total cost is $O(m + n \log n)$.

3/30/06 CS 5633 Analysis of Algorithms

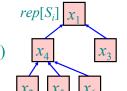
Disjoint set forest: Representing sets as trees

Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as an unordered, potentially unbalanced, not necessarily binary tree, storing only *parent* pointers. rep[S] is the tree root.

• MAKE-SET(x) initializes xas a lone node.

$$S_i = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

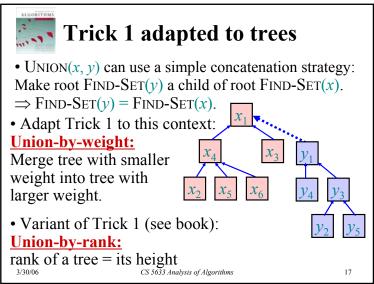
• FIND-SET(x) walks up the tree containing x until it reaches the root. $-\Theta(depth[x])$

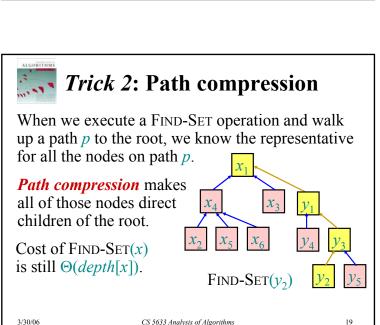


• UNION(x, y) concatenates the trees containing x and y...

3/30/06 CS 5633 Analysis of Algorithms 16

14



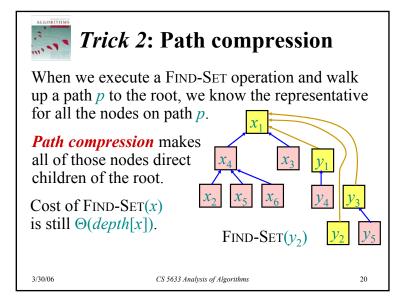


- Height of tree is logarithmic in weight, because:
 - Induction on the weight
 - Height of a tree T is determined by the two subtrees T₁, T₂ that T has been united from.
 - Inductively the heights of T₁, T₂ are the logs of their weights.
 - height(T) = $\max(\text{height}(T_1), \text{height}(T_2))$ possibly +1, but only if T_1 , T_2 have same height

18

• Thus total cost is $O(m \log n)$.

3/30/06 CS 5633 Analysis of Algorithms



Trick 2: Path compression

When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root

Cost of FIND-SET(x) is still $\Theta(depth[x])$.

FIND-SET (y_2)

21

23

3/30/06 CS 5633 Analysis of Algorithms

.....

Trick 2: Path compression

• Note that UNION(*x*, *y*) first calls FIND-SET(*x*) FIND-SET(*y*). Therefore path compression also affects UNION operations.

3/30/06

22

Analysis of Trick 2 alone

Theorem: Total cost of FIND-SET's is $O(m \log n)$. *Proof:* By amortization. Omitted.

Theorem: If all UNION operations occur before all FIND-SET operations, then total cost is O(m).

Proof: If a FIND-SET operation traverses a path with k nodes, costing O(k) time, then k-2 nodes are made new children of the root. This change can happen only once for each of the n elements, so the total cost of FIND-SET is O(m).

3/30/06 CS 5633 Analysis of Algorithms

Ackermann's function A, and it's "inverse" α

Define
$$A_k(j) = \begin{cases} j+1 & \text{if } k=0, \\ A_{k-1}^{(j+1)}(j) & \text{if } k \ge 1. \end{cases}$$
 - iterate $j+1$ times

CS 5633 Analysis of Algorithms

$$A_{1}(j) - j + 1 \qquad A_{0}(1) = 2$$

$$A_{1}(j) \sim 2j \qquad A_{1}(1) = 3$$

$$A_{2}(j) \sim 2j \ 2^{j} > 2^{j} \qquad A_{2}(1) = 7$$

$$A_{3}(1) = 2047$$

$$A_{3}(j) > 2$$

$$A_{4}(j) \text{ is a lot bigger.} \qquad A_{4}(1) > 2$$

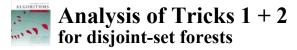
$$2^{2^{047}}$$

$$A_{2}(1) = 2047$$

$$A_{3}(1) = 2047$$

$$A_{3}(1) = 2047$$

Define
$$\alpha(n) = \min_{CS \ 5633 \ Analysis \ of \ Algorithms} \{k : A_k(1) \ge n\} \le 4 \text{ for practical } n.$$



Theorem: In general, total cost is $O(m \alpha(n))$. (long, tricky proof – see Section 21.4 of CLRS)

3/30/06

CS 5633 Analysis of Algorithms

25

27

Application: Dynamic connectivity

Sets of vertices represent connected components. Suppose a graph is given to us **incrementally** by

- ADD-VERTEX(v) : MAKE-SET(v)
- ADD-EDGE(u, v): **if** not CONNECTED(u, v)**then** UNION(v, w)

and we want to support *connectivity* queries:

• CONNECTED(u, v): : FIND-SET(u) = FIND-SET(v) Are u and v in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.

3/30/06

CS 5633 Analysis of Algorithms

Application: Dynamic connectivity

Suppose a graph is given to us *incrementally* by

- ADD-VERTEX(ν)
- ADD-EDGE(u, v)

and we want to support *connectivity* queries:

• CONNECTED(u, v):

Are *u* and *v* in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.

3/30/06

CS 5633 Analysis of Algorithms

26