
3/28/06

1

CS 5633 Analysis of Algorithms 13/28/06

CS 5633 -- Spring 2006

Amortized Analysis
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

CS 5633 Analysis of Algorithms 23/28/06

Dynamic tables

Problem: We may not know the proper size in
advance!

Task: Store a dynamic set in a table/array. Elements
can only be inserted, and all inserted elements are
stored in one contiguous part in the array. The table
should be as small as possible, but large enough so
that it won’t overflow.

IDEA: Whenever the table overflows, “grow” it by
allocating (via malloc or new) a new, larger table.
Move all items from the old table into the new one,
and free the storage for the old table.

Solution: Dynamic tables.

CS 5633 Analysis of Algorithms 33/28/06

Example of a dynamic table

1. INSERT 1

2. INSERT overflow

CS 5633 Analysis of Algorithms 43/28/06

11

Example of a dynamic table

1. INSERT
2. INSERT overflow

3/28/06

2

CS 5633 Analysis of Algorithms 53/28/06

11
2

Example of a dynamic table

1. INSERT
2. INSERT

CS 5633 Analysis of Algorithms 63/28/06

Example of a dynamic table

1. INSERT
2. INSERT

11

22

3. INSERT overflow

CS 5633 Analysis of Algorithms 73/28/06

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT

2
1

overflow

CS 5633 Analysis of Algorithms 83/28/06

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT

2
1

3/28/06

3

CS 5633 Analysis of Algorithms 93/28/06

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT 4

3
2
1

CS 5633 Analysis of Algorithms 103/28/06

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1

overflow

CS 5633 Analysis of Algorithms 113/28/06

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1

overflow

CS 5633 Analysis of Algorithms 123/28/06

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1

3/28/06

4

CS 5633 Analysis of Algorithms 133/28/06

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT

6. INSERT 6
5. INSERT 5

4
3
2
1

77. INSERT

CS 5633 Analysis of Algorithms 143/28/06

Worst-case analysis

Consider a sequence of n insertions. The
worst-case time to execute one insertion is
Ο(n). Therefore, the worst-case time for n
insertions is n ·Ο(n) = Ο(n2).

WRONG! In fact, the worst-case cost for
n insertions is only Θ(n) ≪ Ο(n2).

Let’s see why.

CS 5633 Analysis of Algorithms 153/28/06

Tighter analysis

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

Let ci = the cost of the i th insertion

ci

CS 5633 Analysis of Algorithms 163/28/06

Tighter analysis

Let ci = the cost of the i th insertion

= 1 + cost to double array size

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 1
? ? ? ? ? ? ? ? ? ?

ci

3/28/06

5

CS 5633 Analysis of Algorithms 173/28/06

Tighter analysis

Let ci = the cost of the i th insertion

= 1 + cost to double array size

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 1
0 1 2 0 4 0 0 0 8 0

ci

CS 5633 Analysis of Algorithms 183/28/06

Tighter analysis

Let ci = the cost of the i th insertion

= 1 + cost to double array size

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 1
0 1 2 0 4 0 0 0 8 0

ci 1 2 3 1 5 1 1 1 9 1

CS 5633 Analysis of Algorithms 193/28/06

Tighter analysis (continued)

)(
3

2

)1lg(

0

1

n
n

n

c

n

j

j

n

i
i

Θ=
≤

+≤

=

∑

∑
−

=

=
Cost of n insertions

.

Thus, the average cost of each dynamic-table
operation is Θ(n)/n = Θ(1).

CS 5633 Analysis of Algorithms 203/28/06

Amortized analysis
An amortized analysis is any strategy for
analyzing a sequence of operations:
• compute the total cost of the sequence, OR

• amortized cost of an operation = average
cost per operation, averaged over the number
of operations in the sequence

• amortized cost can be small, even though a
single operation within the sequence might be
expensive

3/28/06

6

CS 5633 Analysis of Algorithms 213/28/06

Amortized analysis

Even though we’re taking averages, however,
probability is not involved!

• An amortized analysis guarantees the
average performance of each operation in
the worst case.

CS 5633 Analysis of Algorithms 223/28/06

Types of amortized analyses
Three common amortization arguments:
• the aggregate method,
• the accounting method,
• the potential method.
We’ve just seen an aggregate analysis.
The aggregate method, though simple, lacks the
precision of the other two methods. In particular,
the accounting and potential methods allow a
specific amortized cost to be allocated to each
operation.

Won’t cover in class

CS 5633 Analysis of Algorithms 233/28/06

Accounting method
• Charge i th operation a fictitious amortized cost ĉi,

where $1 pays for 1 unit of work (i.e., time).
• This fee is consumed to perform the operation, and
• any amount not immediately consumed is stored in

the bank for use by subsequent operations.
• The bank balance must not go negative! We must

ensure that
∑∑
==

≤
n

i
i

n

i
i cc

11
ˆ

for all n.
• Thus, the total amortized costs provide an upper

bound on the total true costs.
CS 5633 Analysis of Algorithms 243/28/06

$0$0 $0$0 $0$0 $0$0 $2$2 $2$2

Example:
$2 $2

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

overflow

3/28/06

7

CS 5633 Analysis of Algorithms 253/28/06

Example:

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

overflow

$0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $0$0
CS 5633 Analysis of Algorithms 263/28/06

Example:

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

$0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $2 $2 $2

CS 5633 Analysis of Algorithms 273/28/06

Accounting analysis
(continued)

Key invariant: Bank balance never drops below 0.
Thus, the sum of the amortized costs provides an
upper bound on the sum of the true costs.

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

ci 1 2 3 1 5 1 1 1 9 1
ĉi 2 3 3 3 3 3 3 3 3 3

banki 1 2 2 4 2 4 6 8 2 4
*

*Okay, so I lied. The first operation costs only $2, not $3.
CS 5633 Analysis of Algorithms 283/28/06

Conclusions
• Amortized costs can provide a clean abstraction

of data-structure performance.
• Any of the analysis methods can be used when

an amortized analysis is called for, but each
method has some situations where it is arguably
the simplest.

• Different schemes may work for assigning
amortized costs in the accounting method,
sometimes yielding radically different bounds.

