mm CS5633-- Spring 2006

it s

ALGORITHMS

—

-
- ~

: Q
S

AR\

Augmenting Data Structures

Carola Wenk
Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

~w~ Dictionariesand Dynamic Sets

Abstract Data Type (ADT) Dictionary
Insert (x, D): insertsxinto D Disa
Delete (x, D): deletesx fromD [dynamic set
Find(x,D): findsxinD

Popular implementation uses any balanced search
tree (not necessarily binary). Like that each
operation takes O(log n) time.

3/2/06 CS5633 Analysis of Algorithms

“ .~ Dynamic order statistics

OS-SeLect (i, S): returnstheith smallest element
inthe dynamic set S.

OS-Rank(x,9): returnstherank of x T Sinthe
sorted order of S'selements.

IDEA: Use ared-black tree for the set S but keep
subtree sizes in the nodes.

Notation for nodes: @

3/2/06 CS5633 Analysisof Algorithms

“w* Exampleof an OS-tree

sze[x] = sizgleft[x]] + sizefright[x]] + 1

3/2/06 CS5633 Analysis of Algorithms

"+ Selection

Implementation trick: Use asentind
(dummy record) for NIL such that size[niL] = 0.

OS-SeLECT(X, 1) ?ith smalest eement in the
subtree rooted at x
k- szdleft[x]] +1 2 k=rank(x)
if i=k thenreturnx
if i<k
thenreturn OS-SeLect (left[x], 1)
esereturn OS-SeLect (right[x], i —k)

(OSRaNK isin the textbook.)

3/2/06 CS5633 Analysis of Algorithms

OS-SELECT(v. /) = /th smallest element in the

pmr—
o subtree rooted at x
e Example k « size|lefi[x]] + 1 k= rank(x)
s if 7=/ then return x

if i <4k
OS SeLECT (I’OOt, 5) then return OS-SeLECT(/efi[x], 1)

else return OS-Sevect(right|x]. i~k

Running time = O(h) = O(logn) for red-black trees.

3/2/06 CS5633 Analysis of Algorithms 6

~ -~ Data structure maintenance

Q. Why not keep the ranks themselves
in the nodes instead of subtree sizes?

A. They are hard to maintain when the
red-black tree is modified.
k- gzdleft[x]] +1 ? k = rank(x)

M odifying operations. INSErRT and DELETE.

Strategy: Update subtree sizeswhen
inserting or deleting.

3/2/06 CS5633 Analysisof Algorithms

“ <+ Exampleof insertion

INSERT (“K™)

3/2/06 CS5633 Analysis of Algorithms 8

5~ Handling rebalancing

Don't forget that RB-INnserT and RB-DELETE may
a so need to modify the red-black tree in order to
maintain balance.

* Recolorings: no effect on subtree sizes.

* Rotations: fix up subtree sizesin O(1) time.

Example: & /X
\164 E:> 316/
(CX 4 - 7 EN
114 N84
7 3 3 4

\ RB-INserT and RB-DeLETE dill runin O(log n) time.

3/2/06 CS5633 Analysis of Algorithms

9

~ -~ Data-structure augmentation

Methodology: (e.g., order-statisticstrees)

1. Choose an underlying data structure (red-black
trees).

2. Determine additional information to be stored
in the data structure (subtree sizes).

3. Verify that thisinformation can be maintained
for modifying operations (RB-INSERT, RB-
DEeLETE — don’t forget rotations).

4. Develop new dynamic-set operations that use
the information (OS-SeLecT and OS-RANK).

These steps are guidelines, not rigid rules.

3/2/06 CS5633 Analysis of Algorithms 10

j;j“;' Interval trees

Goal: To maintain adynamic set of intervals,
such astime intervals.

i =[7, 10]
low[i] = 7—— 10 = highli]
5—— 11 17 — 19
4 8 15 18 22 — 23

Query: For agiven query interva i, find an
interva in the set that overlapsi.

3/2/06 CS5633 Analysisof Algorithms

11

=+ Following the methodology

1. Choose an underlying data structure.
* Red-hlack tree keyed on low (left) endpoint.

2. Determine additional information to be
stored in the data structure.
* Store in each node x the largest value m[x]
in the subtree rooted at x, aswell asthe
interva int[x] corresponding to the key.

3/2/06 CS5633 Analysis of Algorithms 12

“ <+ Exampleinterval tree

high[int[x]]
m[X] = max< m[left[x]]
m[right[x]]

3/2/06 CS5633 Analysis of Algorithms

=+ Modifying operations

3. Verify that thisinformation can be maintained
for modifying operations.
* INSERT: Fix m’s on the way down.
* Rotations — Fixup = O(1) time per rotation:

El .!
304 WW 194
T C N
&/ &/) &/

Total INserT time = O(logn); DeLETE Smilar.

3/2/06 CS5633 Analysis of Algorithms

14

=+ New operations

4. Develop new dynamic-set operations that use
the information.

INTERVAL-SEARCH(i)
X = root
while x* NIL and (lowfi] > high[int[¥]
or lowfint[x] > highli])
do ? i andint[x] don’t overlap
if lef{) * NIL and low(i] £ m[lef{x]]
thenx— leffx]
esex— right[¥
return x

3/2/06 CS5633 Analysisof Algorithms 15

~ <+ Example 1: InTervAL-SEARcH([14,16])

while x # NIL and (low([i] = high[int[x]]
or low|int|x]| = highli]
do =i and inr| x| don’t overlap
if lefi|x] = NIL and low|[f] < m|lefi[x]
then x « /efi[x]
else x « right|x]

X - root
[14,16] and [17,19] don't overlap

14£ 18P x— left[

3/2/06 CS5633 Analysis of Algorithms 16

17,10 N " re—
’ 14-.—.16 I
while v = NIL and (low([i] = high[int[x]]
or low|mt|x]]| = highli]
do =i and inr|x| don’t overlap
if lefi|x] = NIL and low|[i] = m|lefi
then x « Jefi[x]
else v <
[14,16] and [5,11] don't overlap
14>8P x~- rightx]
17

3/2/06 CS5633 Analysis of Algorithms

:T,..n" Example 1. INTervAL-SearcH([14,16])
=T

s

“ " Example 2: IntervaL-SearcH([12,14])
O

w
i~ T e——= 10 h
17,19 ————— 17—
X KA— s
12e—e14
while x # NIL and (low([i] = high[int[x]]
or low|int|x]| = highli]
do =i and inr| x| don’t overlap
if lefi|x] = NIL and low|[f] < m|lefi
then x « /efi[x]
else v « righi[x]

X = root

12£ 18P x- left[

3/2/06 CS5633 Analysisof Algorithms

[12,14] and [17,19] don't overlap

19

3/2/06

~ " Example 1: InTervAL-SEARCH([14,16])
: O)
17,10 YR
T s T
while v = NIL and (low([i] = high[int[x]]
or low[mt|x]] = lughli]
do =i and inr|x| don’t overlap
If lefilx] = NIL and low[f] < m[lefilx]
then x < /efi[x]
else v <
[14,16] and [15,18] overlap
return [15,18]
312106 CS5633 Analysis of Algorithms 18
=]]
“ " Example 2: IntervaL-SearcH([12,14])
. O ;

T le—ets -
while x # NIL and (low([i] = high[int[x]]
or fow[int|x|] = highli]
do =i and inr| x| don’t overlap
if lefi|x] = NIL and low|[f] < m|lefi
then x < /efi|x]
else x « righi[x]
[12,14] and [5,11] don't overlap
12>8b x- rightx]
20

CS5633 Analysis of Algorithms

“ = Example 2: IntervaL-Searcn([12,14])

while x -

NIL and (low([f] = high[int[x]]
or low|mt|x]]| = high|
do =i and inr|x| don’t overlap
if lefi|x] = NIL and low|[i] = m|lefi
then x « Jefi[x]
else <

[12,14] and [15,18] don't overlap
12> 10b x- right[X]

3/2/06 CS5633 Analysis of Algorithms 21

“ = Example 2: IntervaL-Searcn([12,14])

while v = NIL and (low([i] = high[int[x]]
or low|mt|x]]| = high|
do =i and inr|x| don’t overlap
if lefi|x] = NIL and low|[i] = m|lefi
X then x « Jefi[x]

else v <
X =NIL P nointerva that
overlaps [12,14] exists

3/2/06 CS5633 Analysis of Algorithms 22

“Y Analysis
Time = O(h) = O(logn), sSince INTERVAL-

SEARCH does constant work at each level asit
follows a smple path down the tree.

Ligt all overlapping intervals:

* Search, list, delete, repeat.

* Insert them dl again at the end.

Time = O(k log n), where k is the total number
of overlapping intervals.

Thisisan output-sensitive bound.

Best dgorithm to date: O(k + log n).

3/2/06 CS5633 Analysisof Algorithms 23

“ a4 Correctness

Theorem. Let L be the set of intervalsin the
left subtree of node x, and let R be the set of
intervalsin x’sright subtree.
* If the search goes right, then
{i¢l L:icoverlapsi} = A&

« If the search goes Ift, then

{i¢l L:icoverlapsi} = A

P {i¢l R:icoverlapsi} = A&
In other words, it’s always safe to take only 1
of the 2 children: we'll either find something,
or nothing wasto be found.

3/2/06 CS5633 Analysis of Algorithms 24

=+ Correctness proof

Proof. Suppose first that the search goes right.

o If left[x] = NIL, then we re done, since L = A

» Otherwise, the code dictates that we must have
low[i] > m[left[x]]. The vaue m[left[x]]
corresponds to the right endpoint of some
interval j 1 L, and no other interva in L can
have alarger right endpoint than high(j).

[

high(j) =' m[Ieft[>§] A - low(i)
« Therefore, {i¢l L :ic¢overlapsi} = A&

3/2/06 CS5633 Analysis of Algorithms

25

=+ Proof (continued)

Suppose that the search goes left, and assume that
{i¢l L:icdoverlapsi} = /&
* Then, the code dictates that low[i] £ m[left[x]] =
high[j] forsome j I L.
«Since j T L, it doesnot overlap i, and hence
high[i] <low] j].
« But, the binary-search-tree property implies that
fordl i¢l R wehavelow] £ low[i q.
«Butthen {i¢] R:icoverlapsi} =/ O
i j
i¢

3/2/06 CS5633 Analysis of Algorithms 26

