CS 5633 -- Spring 2006

Red-black trees
Carola Wenk
Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Search Trees

Different variants of search trees:

- Balanced search trees (guarantee height of $\log n$ for n elements)
- k-ary search trees (such as B-trees, 2-3-4-trees)
- Search trees that store the keys only in the leaves, and store additional split-values in the internal nodes

Search Trees

- A binary search tree is a binary tree. Each node stores a key. The tree fulfills the binary search tree property: For every node x holds:
- left $(x) \leq x$, if x 's left child left (x) exists
- $x \leq \operatorname{right}(x)$, if x 's right child $\operatorname{right}(x)$ exists

2/21/06
CS 5633 Analysis of Algorithm

ADT Dictionary / Dynamic Set

Abstract data type (ADT) Dictionary (also called Dynamic Set):

A data structure which supports operations

- Insert
- Delete
- Find

Using balanced binary search trees we can implement a dictionary data structure such that each operation takes $O(\log n)$ time.

Red-black trees

This data structure requires an extra onebit color field in each node.
Red-black properties:

1. Every node is either red or black.
2. The root is black.
3. The leaves (NiL's) are black.
4. If a node is red, then both its children are black.
5. All simple paths from any node x, excluding x, to a descendant leaf have the same number of black nodes $=$ black-height (x).

2., 3. The root and leaves (NIL's) are black.

Example of a red-black tree

5. All simple paths from any node x, excluding x, to a descendant leaf have the same number of black nodes = black-height (x).

Height of a red-black tree

Theorem. A red-black tree with n keys has height $h \leq 2 \log (n+1)$.
Proof. (The book uses induction. Read carefully.) InTUITION:

- Merge red nodes into their black parents.

Height of a red-black tree

Theorem. A red-black tree with n keys has height $h \leq 2 \log (n+1)$.
Proof. (The book uses induction. Read carefully.) Intuition:

- Merge red nodes into their black parents.

Height of a red-black tree

Theorem. A red-black tree with n keys has height $h \leq 2 \log (n+1)$.
Proof. (The book uses induction. Read carefully.) Intuition:

- Merge red nodes into their black parents.

Height of a red-black tree

Theorem. A red-black tree with n keys has height $h \leq 2 \log (n+1)$.
Proof. (The book uses induction. Read carefully.) Intuition:

- Merge red nodes into their black parents.

Height of a red-black tree

Theorem. A red-black tree with n keys has height $h \leq 2 \log (n+1)$.
Proof. (The book uses induction. Read carefully.) InTUITION:

- Merge red nodes into their black parents.

Height of a red-black tree

Theorem. A red-black tree with n keys has height $h \leq 2 \log (n+1)$.
Proof. (The book uses induction. Read carefully.)

- Merge red nodes into their black parents.

- This process produces a tree in which each node has 2,3 , or 4 children.
- The 2-3-4 tree has uniform depth h^{\prime} of leaves.

Intuition:

-

Proof (continued)

- We have $h^{\prime} \geq h / 2$, since at most half the leaves on any path are red.
- The number of leaves in each tree is $n+1$
$\Rightarrow n+1 \geq 2^{h^{\prime}}$
$\Rightarrow \log (n+1) \geq h^{\prime} \geq h / 2$ $\Rightarrow h \leq 2 \log (n+1)$.

Query operations

Corollary. The queries Search, Min, Max, Successor, and Predecessor all run in $O(\log n)$ time on a red-black tree with n nodes.

Modifying operations

The operations Insert and Delete cause modifications to the red-black tree:

1. the operation itself,
2. color changes,
3. restructuring the links of the tree via "rotations".

Rotations

- Rotations maintain the inorder ordering of keys:

$$
a \in \alpha, b \in \beta, c \in \gamma \Rightarrow a \leq A \leq b \leq B \leq c
$$

- Rotations maintain the binary search tree property
- A rotation can be performed in $O(1)$ time.

Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert $x=15$.

Red-black trees

This data structure requires an extra onebit color field in each node.
Red-black properties:

1. Every node is either red or black.
2. The root is black.
3. The leaves (NIL's) are black.
4. If a node is red, then both its children are black.
5. All simple paths from any node x, excluding x, to a descendant leaf have the same number of black nodes $=$ black-height (x).

Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert $x=15$.
- Recolor, moving the violation up the tree.

Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert $x=15$.
- Recolor, moving the violation up the tree.

Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert $x=15$.

Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert $x=15$.
- Recolor, moving the violation up the tree.
- Right-Rotate(18).
- Left-Rotate(7)

Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only redblack property 4 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert $x=15$.
- Recolor, moving the violation up the tree.
- Right-Rotate(18).

- Left-Rotate(7)

Insertion into a red－black tree

Idea：Insert x in tree．Color x red．Only red－ black property 4 might be violated．Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring．

Example：
－Insert $x=15$ ．
－Recolor，moving the violation up the tree．

－Right－Rotate（18）．
－Left－Rotate（7）and recolor．

Graphical notation

Let \triangle denote a subtree with a black root．
All Δ＇s have the same black－height．

Pseudocode

$\operatorname{RB}-\operatorname{INSERT}(T, x)$
Tree－Insert (T, x)
color $[x] \leftarrow$ RED $\quad \triangleright$ only RB property 4 can be violated
while $x \neq \operatorname{root}[T]$ and $\operatorname{color}[p[x]]=$ RED
do if $p[x]=\operatorname{left}[p[p[x]]$
then $y \leftarrow \operatorname{right}[p[p[x]] \quad \triangleright y=$ aunt／uncle of x if color $[y]=$ RED
then \langle Case 1〉
else if $x=\operatorname{right}[p[x]]$
then \langle Case 2〉 \triangleright Case 2 falls into Case 3
＜Case 3〉
else 〈＂then＂clause with＂left＂and＂right＂swapped＞
color $[\operatorname{root}[T]] \leftarrow$ BLACK
2／21／06 CS 5633 Analysis of Algorithms
32

Case 3

Done！No more
violations of RB property 4 are possible．
$p[x]=\operatorname{left}[p[p[x]]$
$y=\operatorname{right}[p[p[x]]$
color $[y]=$ BLACK
$x=$ lef $[p[x]]$
2／21／06
CS 5633 Analysis of Algorithms

Analysis

- Go up the tree performing Case 1 , which only recolors nodes.
- If Case 2 or Case 3 occurs, perform 1 or 2 rotations, and terminate.

Running time: $O(\log n)$ with $O(1)$ rotations.
RB-DELETE - same asymptotic running time and number of rotations as RB-INSERT (see textbook).

Case 1'

(Or, A 's children are swapped.) Push C 's black onto A $p[x]=\operatorname{right}[p[p[x]]$ $y=\operatorname{left}[p[p[x]]$ and D, and recurse, since C 's parent may be red.
color $[y]=$ RED

Case 2'

$p[x]=\operatorname{right}[p[p[x]]$
$y=\operatorname{left}[p[p[x]]$ color $[y]=$ BLACK
$x=$ left $[p[x]]$
2/21/06 CS 5633 Analysis of Algorithms
40

