5633 Analysis of Algorithms - Spring 06
$2 / 1 / 06$

Schedule

(subject to change)

Date	Material		
Tu 1/17	Analyzing algorithms (Ch. 2.2) Best case and worst case runtimes; insertion sort, incremental algorithm		
Th 1/19	Asymptotic notation (Ch. 3, Ch. A) O, Ω, , , o, limit-theorem; runtime for code-snippets Homework 1 assigned		
Tu 1/24	Heapsort (Ch. 6) Abstract data types (ADT), priority queue, heap, heapsort, linear-time buildheap		
Th 1/26	Divide-and-conquer (Ch. 2.3) and recurrences (Ch. 4.1, 4.2) Divide-and-conquer, merge sort, binary search; Runtime recurrences. Solving re- currences with recursion tree; solving the recurrence with the substitution method (induction) Homework 1 due; homework 2 assigned		
Tu 1/31	Master theorem (Ch. 4.3), more divide-and-conquer (Ch. 31.6 pages 879- 880; Ch. 30 pages 822-824; 28.2) Use of master theorem to solve recurrences. Repeated squaring for exponentiation, Fibonacci numbers, polynomial multiplication, Strassen's matrix multiplication.		
Th 2/2	Randomized algorithms (Ch. 5.1-5.3), random variables and expected values (Ch. C.3) Hiring problem; Expected runtime analysis. Random variables, expected value. Homework 2 due; homework 3 assigned		
Tu 2/7	Quicksort (Ch. 7.1-7.4) Quicksort, best-case and worst-case runtimes, randomized quicksort.		
Th 2/9	Sorting (Ch. 8.1, 8.2, 8.3) Decision trees, lower $\Omega(n$ log n) bound for comparison sorts, counting sort, radix sort Homework 3 due; homework 4 assigned		
Tu 2/14	Order statistics (Ch. 9) Order statistics (find i-th smallest element); Randomized selection, deterministic selection in linear time		
Tu 2/21	Red-black trees (Ch. 13.1, 13.2, 13.3) Red-black tree property, rotations, insertion; abstract data types, ADT dictionary Homework 4 due; homework 5 assigned		
Th 2/28 $3 / 23$	B-trees (Ch. 18.1, 18.2) k-ary search trees, B-tree def., height, insertion		
Test 1			
Material until 2/16 (inclusive)		\quad	Augmenting Data Structures (Ch. 14)
:---			
Augmenting red-black trees; Dynamic order statistics, interval trees	,	Range Trees	
:---			
Range trees, in 2 dimensions and in d dimensions; preprocessing time, query time.			
Homework 5 due; homework 6 assigned	,		

Date	Material
Th $3 / 9$	Dynamic programming (Ch. 15.2, 15.3, 15.4) Fibonacci, binomial coefficient, LCS: fill table, then construct solution from the table.
Tu 3/21	Dynamic programming (Ch. 15.2, 15.3, 15.4) Matrix chain multiplication; general outline of dynamic programming: Optimal sub- structure (recurrence), overlapping subproblems, fill table bottom-up or by memo- ization.
Th 3/23	Greedy algorithms (Ch. 16.2 pages 380 middle - 384; problem 16-1 on page 402; Ch. 16.3) Greedy algorithms (greedy-choice property, optimal substructure). Making change, fractional knapsack. Huffman codes Homework 6 due; homework 7 assigned
Tu 3/28	Amortized analysis (Ch. 17.1, 17.2, 17.4) Aggregate analysis (total runtime of n operations), accounting method (prepay for later operations); binary counter, dynamic tables
Th 3/30	Union-Find (Ch. 21.1, 21.2, 21.3) Operations, list implementation, tree implementation, union-by-weight / union-by rank, path compression. Ackermann function, and inverse Ackermann function α. Homework 7 due; homework 8 assigned
Tu 4/4	Elementary Graph Algorithms (Ch. 22.1-22.4) Representations of graphs, breadth-first search (BFS), depth-first search (DFS), topological sort
Th 4/6	Minimum Spanning Trees (Ch. 23) Prim (grows single tree), Kruskal (grows forest; uses union/find data structure) Homework 8 due; homework 9 assigned
Tu 5/2	Maximum Flow (Ch. 26) Ford-Fulkerson, Edmonds-Karp Homework 11 due
Tu 4/11	Test 2 Material from 2/21 until 3/30 (inclusive)
Th 4/13 $4 / 20$	Single-source shortest paths (Ch. 24 without 24.4) Optimal substructure, triangle inequality, relaxation step; Dijkstra (only for non- negative edge weights), predecessor tree (shortest path tree); Bellman-Ford, detec- tion of negative-weight cycles; Shortest paths in a DAG
Tu 4/25 $4 / 18$	All-Pairs Shortest Paths (Ch. 25.2) Dynamic programming: Floyd-Warshall Homework 9 due; homework 10 assigned Decision problems, definition of classes P and NP, polynomial-time reductions
P and NP (Ch. 34) NP-hardness, NP-completeness; Show that problems are NP-complete by reducing from other problems; TSP, Clique, Independent Set, Vertex Cover, Hamilton Path, Hamilton Circuit Homework 10 due; homework 11 assigned	

The final exam will be on Saturday May 6th 8:00am - 10:45am.

