CS 5633 Analysis of Algorithms - Spring 06

$$
3 / 7 / 06
$$

6. Homework
 Due 3/23/06 before class

1. Number of keys in B-trees (4 points)

(a) As a function of t and h, what is the minimum number of keys that can be stored in a B-tree with minimum degree t of height h ?
(b) As a function of t and h, what is the maximum number of keys that can be stored in a B-tree with minimum degree t of height h ?

2. Constructing B-trees (9 points)

Let $A=\{1,2, \ldots, 15\}$. When inserting a number into a B-tree please show the different steps that the algorithm performs on the tree as well as the resulting tree.
Reminder: The height of a single-node tree is 0 , not 1 .
(a) Draw a B-tree with minimum degree 2 and height 1 that contains all numbers of A. Then insert 16 into your B-tree.
(b) Draw a B-tree with minimum degree 2 and height 2 that contains all numbers of A. Then insert 16 into your B-tree.
(c) Draw a B-tree with minimum degree 3 and height 1 that contains all numbers of A. Then insert 16 into your B-tree.

3. Range tree counting queries (4 points)

Show how to augment a d-dimensional range tree of n elements such that range counting queries can be answered in $O\left(\log ^{d} n\right)$ time. Argue that your augmentation does not change the asymptotic preprocessing time and the asymptotic space complexity. Hint: Start with $d=1$, and then generalize to higher dimensions.
4. Range trees (9 points)

Let $P=\{(0.5,1.5),(1,4),(2,1),(3,2.5),(4,0.5),(4.5,2),(5,3.5),(6,3),(6.5,2),(7,4.5),(8,1.5)$, $(9,3),(10,1),(10.5,2.5),(11,4),(12,3.5)\}$ be a set of two-dimensional points.

a) (3 points) Draw the primary range tree of P. (The keys are the x-coordinates; the leaves store the two-dimensional points, or pointers to them, but not just the x-coordinates).
b) (3 points) Draw all secondary range trees. (The keys are the y-coordinates; the leaves store the two-dimensional points, or pointers to them, but not just the x-coordinates). Notice that since there are duplicate y-coordinates the trees are not unique.
c) (3 points) Consider the query rectangle $\left[x_{1}=1, x_{2}=6\right] \times\left[y_{1}=1.5, y_{2}=4\right]$. Show how the range reporting query which prints out all points in the query rectangle proceeds in the range tree:

- Show the split nodes (in the primary tree, and in the secondary trees).
- Show the search paths (in the primary tree, and in the secondary trees).
- Show which secondary trees are queried.
- Show which points are output (mark the corresponding leaves in the secondary trees).

Here is another copy of the point set:

