
CS 5633 Analysis of Algorithms 13/3/05

CS 5633 -- Spring 2005

B-trees II

CS 5633 Analysis of Algorithms 23/3/05

B-tree insert
• There are different insertion strategies. We just cover
one of them
• Make one pass down the tree:

• The goal is to insert the new key key into a leaf
• Search where key should be inserted
• Only descend into non-full nodes:

• If a node is full, split it. Then continue
descending.
• Splitting of the root node is the only way a B-
tree grows in height

CS 5633 Analysis of Algorithms 33/3/05

B-TREE-SPLIT-CHILD(x,i,y)
• Split full node y into two nodes y and z of k keys
• Median key S of y is moved up into y’s parent x
• Example below for k = 4

has 2k-1 keys

CS 5633 Analysis of Algorithms 43/3/05

Split root: B-TREE-SPLIT-CHILD(s,1,r)
• The full root node r is split in two.
• A new root node s is created
• s contains the median key H of r and has the
two halves of r as children
• Example below for k = 4

CS 5633 Analysis of Algorithms 53/3/05

B-TREE-INSERT(T,key)
r = root[T]
if (# keys in r) = 2k-1 // root r is full

//insert new root node:
s ← ALLOCATE-NODE()
root[T] ← s
// split old root r to be two children of new root s
B-TREE-SPLIT-CHILD(s,1,r)
B-TREE-INSERT-NONFULL(s,key)

else B-TREE-INSERT-NONFULL(s,key)

CS 5633 Analysis of Algorithms 63/3/05

B-TREE-INSERT-NONFULL(x,key)

if x is a leaf then
insert key at the correct (sorted) position in x
DISK-WRITE(x)

else
find child c of x which by the search tree property

should contain key
DISK-READ(c)
if c is full then // c contains 2k-1 keys

B-TREE-SPLIT-CHILD(x,i,c)
B-TREE-INSERT-NONFULL(c,k)

CS 5633 Analysis of Algorithms 73/3/05

Insert example (k=3)

G M P X

A C D E J K N O R S T U V Y Z

• Insert B:

A C D E

G M P X

A B C D E J K N O R S T U V Y Z

CS 5633 Analysis of Algorithms 83/3/05

Insert example (k=3) -- cont.

• Insert Q:

G M P X

A B C D E J K N O R S T U V Y ZR S T U V
node is full

G M P T X

A B C D E J K N O Y ZR S U VQ R S

CS 5633 Analysis of Algorithms 93/3/05

Insert example (k=3) -- cont.

• Insert L:

G M P T X

A B C D E J K N O Y ZQ R S U V

G M P T Xnode is full

A B C D E J K N O Y ZQ R S U V

G M T X

P

J K L

G M

CS 5633 Analysis of Algorithms 103/3/05

Insert example (k=3) -- cont.

• Insert F:
A B C D E N O Y ZQ R S U V

G M T X

P

J K LA B C D E

node is full

D E N O Y ZQ R S U V

C G M T X

P

J K LA B D E F

CS 5633 Analysis of Algorithms 113/3/05

Runtime of B-TREE-INSERT

• O(k) runtime per node
• Path has height h = O(logk n)
• CPU-time: O(k logk n)

• Disk accesses: O(logk n)
disk accesses are more expensive than CPU time

CS 5633 Analysis of Algorithms 123/3/05

B-trees -- Conclusion
• B-trees are balanced k-ary search trees

• The degree of each node is bounded from
above and below using the parameter k

• All leaves are at the same height

• No rotations are needed: During insertion (or
deletion) the balance is maintained by node
splitting (or node merging)

• The tree grows (shrinks) in height only by
splitting (or merging) the root

