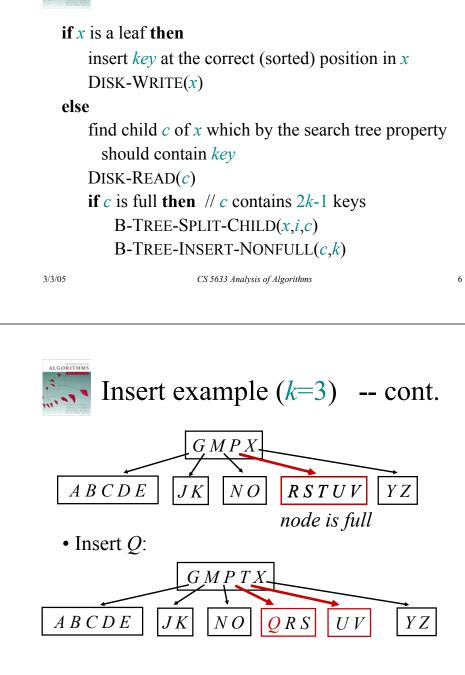
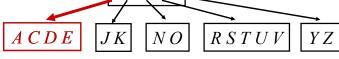
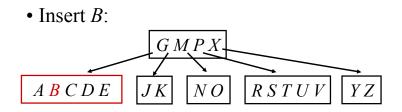
<image/>	 B-tree insert There are different insertion strategies. We just cover one of them Make one pass down the tree: The goal is to insert the new key key into a leaf Search where key should be inserted Only descend into non-full nodes: If a node is full, split it. Then continue descending. Splitting of the root node is the only way a B-tree grows in height
3/3/05 CS 5633 Analysis of Algorithms 1	3/3/05 CS 5633 Analysis of Algorithms 2
B-TREE-SPLIT-CHILD (x,i,y) has $2k-1$ keys • Split full node y into two nodes y and z of k keys • Median key S of y is moved up into y 's parent x • Example below for $k = 4$	 Split root: B-TREE-SPLIT-CHILD(s,1,r) The full root node r is split in two. A new root node s is created s contains the median key H of r and has the two halves of r as children Example below for k = 4
$x \psi^{0} \stackrel{i}{\psi} \psi^{0} \stackrel{i}$	$root[T]$ $T_{1} T_{2} T_{3} T_{4} T_{5} T_{6} T_{7} T_{8}$ $root[T]$ $T_{1} T_{2} T_{3} T_{4} T_{5} T_{6} T_{7} T_{8}$ $root[T]$ $T_{1} T_{2} T_{3} T_{4} T_{5} T_{6} T_{7} T_{8}$

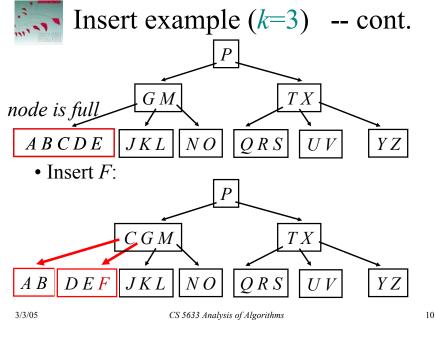

 $r = \operatorname{root}[T]$ if (# keys in r) = 2k-1 // root r is full
//insert new root node: $s \leftarrow \operatorname{ALLOCATE-NODE}()$ root[T] $\leftarrow s$ // split old root r to be two children of new root s
B-TREE-SPLIT-CHILD(s,1,r)
B-TREE-INSERT-NONFULL(s,key)
else B-TREE-INSERT-NONFULL(s,key)

CS 5633 Analysis of Algorithms




5

Insert example (k=3)



3/3/05

ALGORITHM

Runtime of B-TREE-INSERT

- O(k) runtime per node
- Path has height $h = O(\log_k n)$
- CPU-time: $O(k \log_k n)$
- Disk accesses: $O(\log_k n)$

disk accesses are more expensive than CPU time

B-trees -- Conclusion

- B-trees are balanced *k*-ary search trees
- The **degree** of each node is **bounded from above and below** using the parameter *k*
- All leaves are at the same height
- No rotations are needed: During insertion (or deletion) the balance is maintained by node splitting (or node merging)
- The tree grows (shrinks) in height only by splitting (or merging) the root