
CS 5633 Analysis of Algorithms 13/3/05

CS 5633 -- Spring 2005

B-trees

CS 5633 Analysis of Algorithms 23/3/05

External memory dictionary

Task: Given a large amount of data that does
not fit into main memory, process it into a
dictionary data structure
• Need to minimize number of disk accesses
• With each disk read, read a whole block of
data
• Construct a balanced search tree that uses one
disk block per tree node
• Each node needs to contain more than one key

CS 5633 Analysis of Algorithms 33/3/05

k-ary search trees
A k-ary search tree T is defined as follows:
•For each node x of T:

• x has at most k children (i.e., T is a k-ary tree)
• x stores an ordered list of pointers to its children
• x stores an ordered list of keys (1 ≤ # keys ≤ k-1,
and # keys ≥ # children – 1)
• x fulfills the search tree property:
keys in subtree rooted at i-th child ≤ i-th key ≤
keys in subtree rooted at (i+1)-st child

CS 5633 Analysis of Algorithms 43/3/05

Example of a 4-ary tree

CS 5633 Analysis of Algorithms 53/3/05

Example of a 4-ary search tree

10 25

6

2 7 8

12 15 21

11 14 20 23 24 27 40 50

30 45

1
CS 5633 Analysis of Algorithms 63/3/05

B-tree

A B-tree T with minimum degree k ≥ 2 is defined
as follows:
• T is a (2k)-ary search tree
• For every internal node: #keys = #children-1
• Every node, except the root, stores at least k-1 keys
(every internal non-root node has at least k children)
• The root must store at least one key
• All leaves have the same depth

CS 5633 Analysis of Algorithms 73/3/05

B-tree with k=2

10 25

6

2 7 8

12 15 21

11 14 20 23 24 27 40 50

30 45

Remark: This is a (2,3,4)-tree.
CS 5633 Analysis of Algorithms 83/3/05

Height of a B-tree

Theorem: A B-tree with minimum degree k ≥ 2
which stores n keys has height h at most

logk (n+1)/2

Proof: #nodes ≥ 1+2+2k+2k2+…+2kh-1

level 0
level 1

level 2
level 3

n = #keys ≥ 1+(k-1)Σ2ki = 1+2(k-1)⋅ = 2kh-1
i=0

h-1 kh-1
k-1

CS 5633 Analysis of Algorithms 93/3/05

B-tree search
B-TREE-SEARCH(x,key)

i ← 1
while i≤#keys of x and key > i-th key of x

do i ← i+1
if i≤#keys of x and key = i-th key of x

then return (x,i)
if x is a leaf

then return NIL
else b=DISK-READ(i-th child of x)

return B-TREE-SEARCH(b,key)

CS 5633 Analysis of Algorithms 103/3/05

B-tree search runtime

• O(k) per node
• Path has height h = O(logk n)
• CPU-time: O(k logk n)

• Disk accesses: O(logk n)
disk accesses are more expensive than CPU time

