

A *k*-ary search tree T is defined as follows:

•For each node *x* of T:

- *x* has at most *k* children (i.e., T is a *k*-ary tree)
- x stores an ordered list of pointers to its children
- *x* stores an ordered list of keys $(1 \le \# \text{ keys} \le k-1, \text{ and } \# \text{ keys} \ge \# \text{ children} 1)$
- *x* fulfills the search tree property:
- keys in subtree rooted at *i*-th child \leq *i*-th key \leq keys in subtree rooted at (*i*+1)-st child

Example of a 4-ary tree

Example of a 4-ary search tree

A *B***-tree** T with **minimum degree** $k \ge 2$ is defined as follows:

- T is a (2*k*)-ary search tree
- For every internal node: #keys = #children-1
- Every node, except the root, stores at least *k*-1 keys (every internal non-root node has at least *k* children)
- The root must store at least one key
- All leaves have the same depth

2/2/05	
3/3/03	

CS 5633 Analysis of Algorithms

6

ALGORITHM

Remark: This is a (2,3,4)-tree.

Height of a B-tree

Theorem: A B-tree with minimum degree $k \ge 2$ which stores *n* keys has height *h* at most $\log_k (n+1)/2$

Proof: #nodes $\geq 1+2+2k+2k^{2}+...+2k^{h-1}$ level 1 level 3 level 0 level 2 $n = \#\text{keys} \geq 1+(k-1)\sum_{i=0}^{h-1}2k^{i} = 1+2(k-1)\cdot\frac{k^{h}-1}{k-1} = 2k^{h}-1$

B-tree search		B-1	tree search runtime
B-TREE-SEARCH(x,key) $i \leftarrow l$ while $i \leq \#keys$ of x and $key > i$ -th key of x do $i \leftarrow i+1$ if $i \leq \#keys$ of x and $key = i$ -th key of x then return (x,i) if x is a leaf then return NIL else b =DISK-READ(i -th child of x) return B-TREE-SEARCH(b,key)		 O(k) per Path has CPU-tim Disk acc disk ac 	node height $h = O(\log_k n)$ he: $O(k \log_k n)$ resses: $O(\log_k n)$ cesses are more expensive than CPU time
3/3/05 CS 5633 Analysis of Algorithms	9	3/3/05	CS 5633 Analysis of Algorithms

10