
CS 5633 -- Spring 2005

Flow Networks
Carola Wenk

Slides courtesy of Charles Leiserson with
small changes by Carola Wenk

CS 5633 Analysis of Algorithms 24/12/05

Flow networks
Definition. A flow network is a directed graph
G = (V, E) with two distinguished vertices: a
source s and a sink t. Each edge (u, v) ∈ E has
a nonnegative capacity c(u, v). If (u, v) ∉ E,
then c(u, v) = 0.

Example:

ss tt

3
2

3

3 2

2
3

31

2

1

CS 5633 Analysis of Algorithms 34/12/05

Flow networks
Definition. A positive flow on G is a function
p : V × V → R satisfying the following:
• Capacity constraint: For all u, v ∈ V,

0 ≤ p(u, v) ≤ c(u, v).
• Flow conservation: For all u ∈ V \ {s, t},

0),(),(=− ∑∑
∈∈ VvVv

uvpvup .

The value of a flow is the net flow out of the
source:

∑∑
∈∈

−
VvVv

svpvsp),(),(.

CS 5633 Analysis of Algorithms 44/12/05

A flow on a network

ss tt

1:3
2:2

2:3

1:1 2:3 1:2

1:2
2:3

1:30:1

2:2

positive
flow

capacity

The value of this flow is 1 – 0 + 2 = 3.

Flow conservation (like Kirchoff’s current law):
• Flow into u is 2 + 1 = 3.
• Flow out of u is 0 + 1 + 2 = 3.

u

CS 5633 Analysis of Algorithms 54/12/05

The maximum-flow problem

ss tt

2:3
2:2

2:3

1:1 2:3 1:2

2:2
3:3

0:30:1

2:2

The value of the maximum flow is 4.

Maximum-flow problem: Given a flow network
G, find a flow of maximum value on G.

CS 5633 Analysis of Algorithms 64/12/05

Flow cancellation
Without loss of generality, positive flow goes
either from u to v, or from v to u, but not both.

vv

uu

2:3 1:2

vv

uu

1:3 0:2

Net flow from
u to v in both
cases is 1.

The capacity constraint and flow conservation
are preserved by this transformation.
INTUITION: View flow as a rate, not a quantity.

On the following slides the
(net) flow on this edge will
be the negated flow of the

other direction, so, -1.

CS 5633 Analysis of Algorithms 74/12/05

One summation
instead of two.

A notational simplification
IDEA: Work with the net flow between two
vertices, rather than with the positive flow.
Definition. A (net) flow on G is a function
f : V × V → R satisfying the following:
• Capacity constraint: For all u, v ∈ V,

f (u, v) ≤ c(u, v).
• Flow conservation: For all u ∈ V \ {s, t},

0),(=∑
∈Vv

vuf .

• Skew symmetry: For all u, v ∈ V,
f (u, v) = –f (v, u).

CS 5633 Analysis of Algorithms 84/12/05

Equivalence of definitions
Theorem. The two definitions are equivalent.
Proof. (⇒) Let f (u, v) = p(u, v) – p(v, u).
• Capacity constraint: Since p(u, v) ≤ c(u, v) and

p(v, u) ≥ 0, we have f (u, v) ≤ c(u, v).
• Flow conservation:

()

∑∑
∑∑

∈∈

∈∈

−=

−=

VvVv

VvVv

uvpvup

uvpvupvuf

),(),(

),(),(),(

• Skew symmetry:
f (u, v) = p(u, v) – p(v, u)

= – (p(v, u) – p(u, v))
= – f (v, u).

CS 5633 Analysis of Algorithms 94/12/05

Proof (continued)
(⇐) Let

p(u, v) = f (u, v) if f(u, v) > 0,
0 if f(u, v) ≤ 0.

• Capacity constraint: By definition, p(u, v) ≥ 0. Since
f (u, v) ≤ c(u, v), it follows that p(u, v) ≤ c(u, v).

• Flow conservation: If f (u, v) > 0, then p(u, v) – p(v, u)
= f (u, v). If f (u, v) ≤ 0, then p(u, v) – p(v, u) = – f (v, u)
= f (u, v) by skew symmetry. Therefore,

∑∑∑
∈∈∈

=−
VvVvVv

vufuvpvup),(),(),(.

CS 5633 Analysis of Algorithms 104/12/05

Positive flow vs. (net) flow

ss tt

2:3
2:2

2:3

1:1 2:3 1:2

2:2
3:3

0:30:1

2:2

Positive flow:

ss tt

2:3
2:2

2:3

1:1 1:3 -1:2

2:2
3:3

0:3-2:1

2:2

(Net) flow:
-3:0

Edges with 0-
capacity are
usually omitted,
although they do
carry a negative
flow!

-2:0

-2:0

-3:0
-1:0

-2:0

-2:0

CS 5633 Analysis of Algorithms 114/12/05

Notation

Definition. The value of a flow f, denoted by | f |,
is given by

),(

),(

Vsf

vsff
Vv

=

= ∑
∈

.
Implicit summation notation: A set used in
an arithmetic formula represents a sum over
the elements of the set.
• Example — flow conservation:

f (u, V) = 0 for all u ∈ V \ {s, t}.
CS 5633 Analysis of Algorithms 124/12/05

Simple properties of flow
Lemma.
1. f (X, X) = 0,
2. f (X, Y) = – f (Y, X),
3. f (X∪Y, Z) = f (X, Z) + f (Y, Z) if X∩Y = ∅.

Theorem. | f | = f (V, t).
Proof.

| f | = f (s, V) 3.
= f (V, V) – f (V\{s}, V) 1., 2.
= f (V, V\{s}) 2., 3.
= f (V, t) + f (V, V\{s,t}) Flow conservation
= f (V, t).

CS 5633 Analysis of Algorithms 134/12/05

Flow into the sink

ss tt

2:3
2:2

2:3

1:1 1:3 -1:2

2:2
3:3

0:3-2:1

2:2

| f | = f (s, V) = 4 f (V, t) = 4

CS 5633 Analysis of Algorithms 144/12/05

Cuts
Definition. A cut (S, T) of a flow network G =
(V, E) is a partition of V such that s ∈ S and t ∈ T.
If f is a flow on G, then the flow across the cut is
f (S, T).

ss tt

2:3
2:2

2:3

1:1 1:3 -1:2

2:2
3:3

0:3-2:1

2:2

∈ S
∈ T

f (S, T) = (2 + 2) + (– 2 + 1 – 1 + 2)
= 4

-2:0

CS 5633 Analysis of Algorithms 154/12/05

Another characterization of
flow value

Lemma. For any flow f and any cut (S, T), we
have | f | = f (S, T).
Proof. f (S, T) = f (S, V) – f (S, S)

= f (S, V)
= f (s, V) + f (S\{s}, V)
= f (s, V)
= | f |.

CS 5633 Analysis of Algorithms 164/12/05

Capacity of a cut
Definition. The capacity of a cut (S, T) is c(S, T).

ss tt

2:3
2:2

2:3

1:1 1:3 0:2

2:2
3:3

0:30:1

2:2

∈ S
∈ T

c(S, T) = (2 + 3) + (0 + 1 + 2 + 3)
= 11

-2:0

CS 5633 Analysis of Algorithms 174/12/05

Upper bound on the maximum
flow value

Theorem. The value of any flow is bounded
above by the capacity of any cut: |f| ≤ c(S,T) .

.),(

),(

),(
),(

TSc

vuc

vuf
TSff

Su Tv

Su Tv

=

≤

=
=

∑∑
∑∑

∈ ∈

∈ ∈

Proof.

CS 5633 Analysis of Algorithms 184/12/05

Residual network
Definition. Let f be a flow on G = (V, E). The
residual network Gf (V, Ef) is the graph with
strictly positive residual capacities

cf (u, v) = c(u, v) – f (u, v) > 0.
Edges in Ef admit more flow.

uu vv

-3:1

3:5

G: uu vv

4

2

Gf :

Example:

Lemma. |Ef | ≤ 2|E |.

CS 5633 Analysis of Algorithms 194/12/05

Augmenting paths
Definition. Any path from s to t in Gf is an aug-
menting path in G with respect to f. The flow
value can be increased along an augmenting
path p by)},({min)(

),(
vucpc fpvuf ∈

= .

ss

2

3

Gf :
4

2

7 2

1
tt

3

2

cf (p) = 2
5:5 2:3

ss

3:5

G:
2:6 -5:2

tt

2:5Ex.:

-3:0 -2:0 -2:0

-2:0

CS 5633 Analysis of Algorithms 204/12/05

Max-flow, min-cut theorem
Theorem. The following are equivalent:
1. | f | = c(S, T) for some cut (S, T).
2. f is a maximum flow.
3. f admits no augmenting paths.
Proof.
(1) ⇒ (2): Since | f | ≤ c(S, T) for any cut (S, T) (by
the theorem from 3 slides back), the assumption that
| f | = c(S, T) implies that f is a maximum flow.
(2) ⇒ (3): If there were an augmenting path, the
flow value could be increased, contradicting the
maximality of f.

min-cut

CS 5633 Analysis of Algorithms 214/12/05

Proof (continued)
(3) ⇒ (1): Define S = {v ∈ V : there exists a path in Gf
from s to v}, and let T = V \ S. Since f admits no
augmenting paths, there is no path from s to t in Gf .
Hence, s ∈ S and t ∈ T, and thus (S, T) is a cut. Consider
any vertices u ∈ S and v ∈ T.

We must have cf (u, v) = 0, since if cf (u, v) > 0, then v ∈ S,
not v ∈ T as assumed. Thus, f (u, v) = c(u, v), since cf (u, v)
= c(u, v) – f (u, v). Summing over all u ∈ S and v ∈ T
yields f (S, T) = c(S, T), and since | f | = f (S, T), the theorem
follows.

ss uu vv
S Tpath in Gf

CS 5633 Analysis of Algorithms 224/12/05

Ford-Fulkerson max-flow
algorithm

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
Can be slow:

ss tt

109 109

109

1

109

G:

CS 5633 Analysis of Algorithms 234/12/05

Ford-Fulkerson max-flow
algorithm

Can be slow:

ss tt

0:109 0:109

0:109

0:1

0:109

G:

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

CS 5633 Analysis of Algorithms 244/12/05

Ford-Fulkerson max-flow
algorithm

Can be slow:

ss tt

0:109 0:109

0:109

0:1

0:109

G:

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

CS 5633 Analysis of Algorithms 254/12/05

Ford-Fulkerson max-flow
algorithm

Can be slow:

ss tt

1:109 0:109

1:109

1:1

0:109

G:

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

CS 5633 Analysis of Algorithms 264/12/05

Ford-Fulkerson max-flow
algorithm

Can be slow:

ss tt

1:109 0:109

1:109

1:1

0:109

G:

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

CS 5633 Analysis of Algorithms 274/12/05

Ford-Fulkerson max-flow
algorithm

Can be slow:

ss tt

1:109 1:109

1:109

0:1

1:109

G:

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

CS 5633 Analysis of Algorithms 284/12/05

Ford-Fulkerson max-flow
algorithm

Can be slow:

ss tt

1:109 1:109

1:109

0:1

1:109

G:

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

CS 5633 Analysis of Algorithms 294/12/05

Ford-Fulkerson max-flow
algorithm

Can be slow:

ss tt

2:109 1:109

2:109

1:1

1:109

G:

2 billion iterations on a graph with 4 vertices!

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

CS 5633 Analysis of Algorithms 304/12/05

Ford-Fulkerson max-flow
algorithm

Runtime:
• Let | f*| be the value of a maximum flow, and

assume it is an integral value.
• The initialization takes O(|E|)
• There are at most | f*| iterations of the loop
• Find an augmenting path with DFS in O(|V|+|E|) time
• Each augmentation takes O(|V|) time
⇒ O(|E| ·|f*|) in total

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

CS 5633 Analysis of Algorithms 314/12/05

Edmonds-Karp algorithm

Edmonds and Karp noticed that many people’s
implementations of Ford-Fulkerson augment along a
breadth-first augmenting path: a shortest path in Gf from s
to t where each edge has weight 1. These implementations
would always run relatively fast.
Since a breadth-first augmenting path can be found in
O(V+E) time, their analysis, which provided the first
polynomial-time bound on maximum flow, focuses on
bounding the number of flow augmentations.
(In independent work, Dinic also gave polynomial-time
bounds.)

CS 5633 Analysis of Algorithms 324/12/05

Running time of Edmonds-
Karp

• One can show that the number of flow augmentations
(i.e., the number of iterations of the while loop) is
O(V E).

• Breadth-first search runs in O(V+E) time

• All other bookkeeping is O(V) per augmentation.

⇒ The Edmonds-Karp maximum-flow
algorithm runs in O(V E2) time.

CS 5633 Analysis of Algorithms 334/12/05

Monotonicity lemma
Lemma. Let δ(v) = δf (s, v) be the breadth-first
distance from s to v in Gf . During the Edmonds-
Karp algorithm, δ(v) increases monotonically.
Proof. Suppose that f is a flow on G, and augmentation
produces a new flow f ′. Let δ′(v) = δf ′(s, v). We’ll
show that δ′(v) ≥ δ(v) by induction on δ(v). For the base
case, δ′(s) = δ(s) = 0.
For the inductive case, consider a breadth-first path s →
L → u → v in Gf ′. We must have δ′(v) = δ′(u) + 1, since
subpaths of shortest paths are shortest paths. Certainly,
(u, v) ∈ Ef ′ , and now consider two cases depending on
whether (u, v) ∈ Ef .

CS 5633 Analysis of Algorithms 344/12/05

Case 1
Case: (u, v) ∈ Ef .

δ(v) ≤ δ(u) + 1 (triangle inequality)
≤ δ′(u) + 1 (induction)
= δ′(v) (breadth-first path),

and thus monotonicity of δ(v) is established.

We have

CS 5633 Analysis of Algorithms 354/12/05

Case 2
Case: (u, v) ∉ Ef .
Since (u, v) ∈ Ef ′ , the augmenting path p that produced
f ′ from f must have included (v, u). Moreover, p is a
breadth-first path in Gf :

p = s → L → v → u → L → t .
Thus, we have

δ(v) = δ(u) – 1 (breadth-first path)
≤ δ′(u) – 1 (induction)
= δ′(v) – 2 (breadth-first path)
< δ′(v) ,

thereby establishing monotonicity for this case, too.
CS 5633 Analysis of Algorithms 364/12/05

Counting flow augmentations
Theorem. The number of flow augmentations
in the Edmonds-Karp algorithm (Ford-Fulkerson
with breadth-first augmenting paths) is O(VE).
Proof. Let p be an augmenting path, and suppose that
we have cf (u, v) = cf (p) for edge (u, v) ∈ p. Then, we
say that (u, v) is critical, and it disappears from the
residual graph after flow augmentation.

ss

2

3

Gf :
4

2

7 2

1
tt

3
cf (p) = 2Example:

2

CS 5633 Analysis of Algorithms 374/12/05

Counting flow augmentations
Theorem. The number of flow augmentations
in the Edmonds-Karp algorithm (Ford-Fulkerson
with breadth-first augmenting paths) is O(VE).
Proof. Let p be an augmenting path, and suppose that
the residual capacity of edge (u, v) ∈ p is cf (u, v) = cf (p).
Then, we say (u, v) is critical, and it disappears from the
residual graph after flow augmentation.

ss
5

Gf ′:
2

4

5

3
tt

1
Example:

4 4
CS 5633 Analysis of Algorithms 384/12/05

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have δ(v) =
δ(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let δ′ be the distance function when
(v, u) is on an augmenting path. Then, we have

ss
uu

vv
tt

Example:

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).

CS 5633 Analysis of Algorithms 394/12/05

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have δ(v) =
δ(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let δ′ be the distance function when
(v, u) is on an augmenting path. Then, we have

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).

ss
uu

vv
tt

δ(u) = 5

δ(v) = 6

Example:

CS 5633 Analysis of Algorithms 404/12/05

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have δ(v) =
δ(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let δ′ be the distance function when
(v, u) is on an augmenting path. Then, we have

ss
uu

vv
tt

δ(u) = 5

δ(v) = 6

Example:

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).

CS 5633 Analysis of Algorithms 414/12/05

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have δ(v) =
δ(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let δ′ be the distance function when
(v, u) is on an augmenting path. Then, we have

ss
uu

vv
tt

δ(u) ≥ 7

δ(v) ≥ 6

Example:

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).

CS 5633 Analysis of Algorithms 424/12/05

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have δ(v) =
δ(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let δ′ be the distance function when
(v, u) is on an augmenting path. Then, we have

ss
uu

vv
tt

δ(u) ≥ 7

δ(v) ≥ 6

Example:

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).

CS 5633 Analysis of Algorithms 434/12/05

Counting flow augmentations
(continued)

The first time an edge (u, v) is critical, we have δ(v) =
δ(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let δ′ be the distance function when
(v, u) is on an augmenting path. Then, we have

ss
uu

vv
tt

δ(u) ≥ 7

δ(v) ≥ 8

Example:

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).

CS 5633 Analysis of Algorithms 444/12/05

Running time of Edmonds-
Karp

Distances start out nonnegative, never decrease, and are
at most |V| – 1 until the vertex becomes unreachable.
Thus, (u, v) occurs as a critical edge O(V) times, because
δ(v) increases by at least 2 between occurrences. Since
the residual graph contains O(E) edges, the number of
flow augmentations is O(V E).

Corollary. The Edmonds-Karp maximum-flow
algorithm runs in O(V E2) time.
Proof. Breadth-first search runs in O(E) time, and all
other bookkeeping is O(V) per augmentation.

CS 5633 Analysis of Algorithms 454/12/05

Best to date
• The asymptotically fastest algorithm to date for

maximum flow, due to King, Rao, and Tarjan,
runs in O(V E logE/(V lg V)V) time.

• If we allow running times as a function of edge
weights, the fastest algorithm for maximum
flow, due to Goldberg and Rao, runs in time
O(min{V 2/3, E1/2} ⋅ E log (V 2/E + 2) ⋅ log C),

where C is the maximum capacity of any edge
in the graph.

