

CS 5633 -- Spring 2005

Slides courtesy of Charles Leiserson with small

changes by Carola Wenk CS 5633 Analysis of Algorithms 3/31/05

Union-Find Data Structures Carola Wenk

 $-\Theta(1)$

Simple linked-list solution

Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as an (unordered) doubly linked list. Define representative element

$$rep[S_i]$$
 to be the front of the list, x_1 .
$$S_i: \begin{array}{c|c} x_1 & x_2 & \cdots & x_k \\ \hline rep[S_i] & \end{array}$$

- $-\Theta(1)$ • Make-Set(x) initializes x as a lone node.
- FIND-SET(x) walks left in the list containing xuntil it reaches the front of the list. $-\Theta(n)$ • Union(x, y) concatenates the lists containing

x and y, leaving rep. as FIND-SET[x].

Disjoint-set data structure (Union-Find) **Problem:**

• Maintain a dynamic collection of *pairwise-disjoint* sets $S = \{S_1, S_2, ..., S_r\}.$

3/31/05

- Each set S_i has one element distinguished as the representative element, $rep[S_i]$.
- Must support 3 operations:
- MAKE-SET(x): adds new set {x} to S
 - with $rep[\{x\}] = x$ (for any $x \notin S_i$ for all i) • Union(x, y): replaces sets S_x , S_y with $S_x \cup S_y$ in S
 - (for any x, y in distinct sets S_r , S_v) • FIND-SET(x): returns representative $rep[S_x]$ of set S_x containing element x

CS 5633 Analysis of Algorithms

- (Union-Find) II
- given (as pointers or references for example) • Hence, we do not need to first search for the element in the data structure. We only search

• Note that in all operations the elements x, y are

for the representative element.

Simple balanced-tree solution maintain how? Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as a balanced tree (ignoring keys). Define representative element $rep[S_i]$ to be the root of the tree. $S_i = \{x_1, x_2, x_3, x_4, x_5\}$ $-\Theta(1)$ $rep[S_i] x$

changing rep. of x or $y - \Theta(1)$

Plan of attack

- We will build a simple disjoint-union data structure that, in an **amortized sense**, performs significantly

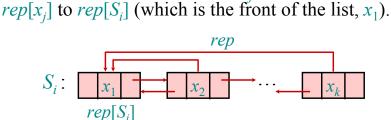
3/31/05

- better than $\Theta(\log n)$ per op., even better than $\Theta(\log \log n)$, $\Theta(\log \log \log n)$, ..., but not quite $\Theta(1)$.
- To reach this goal, we will introduce two key *tricks*. Each trick converts a trivial $\Theta(n)$ solution into a simple $\Theta(\log n)$ amortized solution. Together, the two tricks yield a much better solution.
- First trick arises in an augmented linked list. Second trick arises in a tree structure.

 x_3

Augmented linked-list solution Store $S_i = \{x_1, x_2, ..., x_k\}$ as unordered doubly linked list. **Augmentation:** Each element x_i also stores pointer

CS 5633 Analysis of Algorithms



all elements in the list containing y.

• FIND-SET(x) returns rep[x].

 $-\Theta(1)$ • UNION(x, y) concatenates the lists containing x and y, and updates the *rep* pointers for $-\Theta(n)$

Example of

augmented linked-list solution Each element x_i stores pointer $rep[x_i]$ to $rep[S_i]$.

CS 5633 Analysis of Algorithms

- Union(x, y)• concatenates the lists containing x and y, and
 - updates the *rep* pointers for all elements in the list containing y.

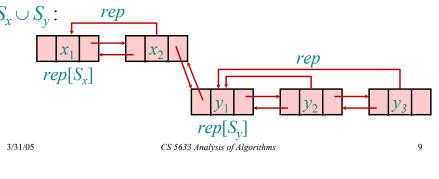
rep $rep[S_r]$

augmented linked-list solution

Each element x_i stores pointer $rep[x_i]$ to $rep[S_i]$. Union(x, y)

Example of

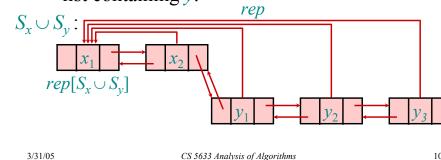
- concatenates the lists containing x and y, and • updates the *rep* pointers for all elements in the
- list containing y.



Example of augmented linked-list solution Each element x_i stores pointer $rep[x_i]$ to $rep[S_i]$.

Union(x, y)• concatenates the lists containing x and y, and

• updates the *rep* pointers for all elements in the list containing y.



Alternative concatenation

Union(x, y) could instead • concatenate the lists containing y and x, and

rep

 $rep[S_v]$

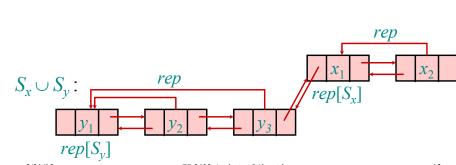
• update the *rep* pointers for all elements in the list containing x.

rep $rep[S_x]$

Alternative concatenation

Union(x, y) could instead

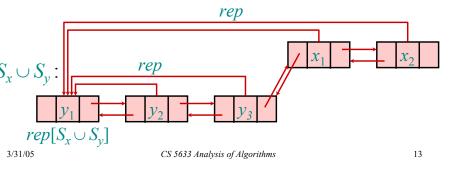
- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing x.



Alternative concatenation

Union(x, y) could instead • concatenate the lists containing y and x, and

- update the *rep* pointers for all elements in the
- list containing x.



Trick 1: Smaller into larger (weighted-union heuristic) To save work, concatenate smaller list onto the end

of the larger list. $Cost = \Theta(length \ of \ smaller \ list)$. Augment list to store its *weight* (# elements).

- Let *n* denote the overall number of elements (equivalently, the number of MAKE-SET operations)
- Let *m* denote the total number of operations. • Let f denote the number of FIND-SET operations.

Theorem: Cost of all Union's is $O(n \log n)$.

CS 5633 Analysis of Algorithms

Corollary: Total cost is $O(m + n \log n)$.

(weighted-union heuristic) **Theorem:** Total cost of Union's is $O(n \log n)$.

Analysis of Trick 1

- **Proof.** Monitor an element x and set S_x containing it.
- After initial MAKE-SET(x), weight[S_r] = 1. • Each time S_x is united with S_y , $weight[S_y] \ge weight[S_x]$,

 - pay 1 to update rep[x], and • weight $[S_x]$ at least doubles (increases by weight $[S_y]$).
- Each time S_x is united with smaller set S_y , pay nothing, and • weight[S_x] only increases.
- Thus pay $\leq \log n$ for x.

Disjoint set forest: Representing sets as trees

Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as an unordered, potentially unbalanced, not necessarily binary tree,

storing only *parent* pointers. $rep[S_i]$ is the tree root.

 $S_i = \{x_1, x_2, x_3, x_4, x_5, x_6\}$

 $rep[S_i]$

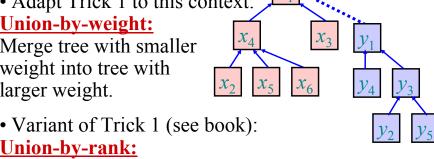
- Make-Set(x) initializes x as a lone node. • FIND-SET(x) walks up the
- tree containing x until it reaches the root. $-\Theta(depth[x])$
- Union(x, y) concatenates the trees containing x and y...

3/31/05

Trick 1 adapted to trees

- UNION(x, y) can use a simple concatenation strategy:
- Make root FIND-SET(y) a child of root FIND-SET(x).
- \Rightarrow FIND-SET(y) = FIND-SET(x).
- Adapt Trick 1 to this context:
- **Union-by-weight:**

Merge tree with smaller weight into tree with larger weight.



Union-by-rank: rank of a tree = its height

CS 5633 Analysis of Algorithms

17

Trick 1 adapted to trees (union-by-weight)

- Height of tree is logarithmic in weight, because:
 - Induction on the weight
 - Height of a tree T is determined by the two subtrees T₁, T₂ that T has been united from.
 - Inductively the heights of T_1 , T_2 are the logs of their weights.
 - height(T) = $max(height(T_1), height(T_2))$ possibly +1, but only if T_1 , T_2 have same height

CS 5633 Analysis of Algorithms

• Thus total cost is $O(m + f \log n)$.

Trick 2: Path compression

3/31/05

When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

 $|x_3|$

FIND-SET (y_2)

Path compression makes all of those nodes direct children of the root.

Cost of FIND-SET(x) is still $\Theta(depth[x])$.

Trick 2: Path compression

When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

is still $\Theta(depth[x])$.

 x_{4} x_3 y_1 Cost of FIND-SET(x) FIND-SET (y_2)

Trick 2: Path compression

When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root. Cost of FIND-SET(x) is still $\Theta(depth[x])$. FIND-SET (v_2) Trick 2: Path compression

• Note that UNION(x,y) first calls FIND-SET(x)FIND-SET(y). Therefore path compression also affects UNION operations.

Analysis of Trick 2 alone

3/31/05

Theorem: Total cost of FIND-SET's is $O(m \log n)$.

CS 5633 Analysis of Algorithms

Proof: By amortization. Omitted. **Theorem:** If all Union operations occur before

all FIND-SET operations, then total cost is O(m). **Proof:** If a FIND-SET operation traverses a path with k nodes, costing O(k) time, then k-2 nodes are made new children of the root. This change can happen only once for each of the *n* elements,

3/31/05

Ackermann's function A, and it's "inverse" α

CS 5633 Analysis of Algorithms

Define
$$A_k(j) = \begin{cases} j+1 & \text{if } k = 0, \\ A_{k-1}^{(j+1)}(j) & \text{if } k \ge 1. \end{cases}$$
 — iterate $j+1$ tind $A_0(j) = j+1$ $A_0(1) = 2$ $A_1(j) \sim 2j$ $A_1(1) = 3$ $A_2(j) \sim 2j$ $2^j > 2^j$ $A_2(1) = 7$

$$\begin{array}{lll}
A_{1}(j) & > 2j & A_{1}(1) = 3 \\
A_{2}(j) & > 2j & Z^{j} & A_{2}(1) = 7 \\
& A_{3}(1) = 2047
\end{array}$$

$$A_{3}(j) & > 2$$

$$A_{3}(j) & > 2$$

$$A_{3}(j) & > 2$$

$$A_{4}(j) & \text{is a lot bigger} \qquad A_{4}(1) & > 2$$

2048 times $A_4(j)$ is a lot bigger. $A_4(1) >$

so the total cost of FIND-SET is O(f + n). Define $\alpha(n) = \min \{k : A_k(1) \ge n\} \le 4 \text{ for practical } n$

21

Analysis of Tricks 1 + 2 for disjoint-set forests **Theorem:** In general, total cost is $O(m \alpha(n))$.

3/31/05

(long, tricky proof – see Section 21.4 of CLRS)

CS 5633 Analysis of Algorithms

Application: **Dynamic connectivity**

Suppose a graph is given to us *incrementally* by • ADD-VERTEX(ν) • ADD-EDGE(u, v)

• CONNECTED(u, v):

25

Dynamic connectivity Sets of vertices represent connected components. Suppose a graph is given to us *incrementally* by

- ADD-VERTEX(v): MAKE-SET(v)• ADD-EDGE(u, v): if not Connected(u, v)
- then UNION(v, w)and we want to support *connectivity* queries:

Application:

Are *u* and *v* in the same connected component? For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.

and we want to support *connectivity* queries: Are *u* and *v* in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a

previously disconnected pair of vertices. CS 5633 Analysis of Algorithms

26

- CONNECTED(u, v): : FIND-SET(u) = FIND-SET(v)