

Minimum Spanning Trees

Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

Adjacency-matrix representation

The adjacency matrix of a graph $G=(V, E)$, where $V=\{1,2, \ldots, n\}$, is the matrix $A[1 \ldots n, 1 \ldots n]$ given by

$$
A[i, j]= \begin{cases}1 & \text { if }(i, j) \in \mathrm{E}, \\ 0 & \text { if }(i, j) \notin \mathrm{E} .\end{cases}
$$

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

$\Theta\left(|V|^{2}\right)$ storage \Rightarrow dense representation.

Definition. A directed graph (digraph) $G=(V, E)$ is an ordered pair consisting of

- a set V of vertices (singular: vertex),
- a set $E \subseteq V \times V$ of edges.

In an undirected graph $G=(V, E)$, the edge set E consists of unordered pairs of vertices.
In either case, we have $|E|=O\left(|V|^{2}\right)^{2}$.
Moreover, if G is connected, then $|E| \geq|V|-1$.
(Review CLRS, Appendix B. 4 and B.5.)

An adjacency list of a vertex $v \in V$ is the list $A d j[v]$ of vertices adjacent to v.

$$
\begin{aligned}
& \operatorname{Adj}[1]=\{2,3\} \\
& \operatorname{Adj}[2]=\{3\} \\
& \operatorname{Adjj}[3]=\{ \} \\
& \operatorname{Adj}[4]=\{3\}
\end{aligned}
$$

For undirected graphs, $|\operatorname{Adj}[v]|=\operatorname{degree}(v)$.
For digraphs, $|\operatorname{Adj}[\nu]|=$ out-degree(v).

Adjacency-list representation

$\therefore . \ldots$ Minimum spanning trees

Input: A connected, undirected graph $G=(V, E)$ with weight function $w: E \rightarrow \mathrm{R}$.

- For simplicity, assume that all edge weights are distinct. (CLRS covers the general case.)

Output: A spanning tree T - a tree that connects all vertices - of minimum weight:

$$
w(T)=\sum_{(u, v) \in T} w(u, v) .
$$

\Rightarrow adjacency lists use $\Theta(|V|+|E|)$ storage
\Rightarrow a sparse representation

Example of MST

Handshaking Lemma:

- For undirected graphs:
$\sum_{v \in V} \operatorname{degree}(v)=2|\mathrm{E}|$
- For digraphs:
$\sum_{v \in V}$ in-degree(v) $+\sum_{v \in V}$ out-degree(v) $=2|\mathrm{E}|$ of MST

$\therefore \quad$ Proof of theorem

Proof. Suppose $(u, v) \notin T$. Cut and paste.
T :
$0 \in A$

- $\in V \backslash A$
$(u, v)=$ least-weight edge connecting A to $V \backslash A$

Proof. Suppose $(u, v) \notin T$. Cut and paste.

$0 \in A$

- $\in V \backslash A$

Proof of theorem

Consider the unique simple path from u to v in T.

Proof of theorem

Proof. Suppose $(u, v) \notin T$. Cut and paste.

Consider the unique simple path from u to v in T. Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in $V \backslash A$.
A lighter-weight spanning tree than T results.

Prim's algorithm

```
Idea: Maintain \(V \backslash A\) as a priority queue \(Q\). Key
each vertex in \(Q\) with the weight of the least-
weight edge connecting it to a vertex in \(A\).
\(Q \leftarrow V\)
\(k e y[v] \leftarrow \infty\) for all \(v \in V\)
\(k e y[s] \leftarrow 0\) for some arbitrary \(s \in V\)
while \(Q \neq \varnothing\)
    do \(u \leftarrow\) Extract-Min \((Q)\)
        for each \(v \in A d j[u]\)
            do if \(v \in Q\) and \(w(u, v)<k e y[v]\)
                    then \(k e y[v] \leftarrow w(u, v) \quad \triangleright\) Decrease-Key
                        \(\pi[v] \leftarrow u\)
```

At the end, $\{(v, \pi[v])\}$ forms the MST.

Example of Prim's algorithm

Example of Prim's algorithm

$0 \in A$

- $\in V \backslash A$
$u \leftarrow$ EXTRACT-MIN (Q)
for each $v \in \operatorname{Adj}[u]$
do if $v \in Q$ and $w(u, v)<k e y[v]$
then $k e y[v] \leftarrow w(u, v) \triangleright$ DECREASE-KEY

Example of Prim's algorithm

$0 \in A$

- $\in V \backslash A$

$u \leftarrow \operatorname{EXTRACT}-\operatorname{MiN}(Q)$
for each $v \in \operatorname{Adj}[u]$
do if $v \in Q$ and $w(u, v)<k e y[v]$
then $k e y[v] \leftarrow w(u, v) \triangleright$ DECREASE-KEY

Example of Prim's algorithm

Example of Prim's algorithm

$0 \in A$

- $\in V \backslash A$

$u \leftarrow \operatorname{EXTRACT}-\operatorname{MIN}(Q)$
for each $v \in \operatorname{Adj}[u]$
do if $v \in Q$ and $w(u, v)<k e y[v]$
then $k e y[v] \leftarrow w(u, v) \triangleright$ DECREASE-KEY

Example of Prim's algorithm

Example of Prim's algorithm

Example of Prim's algorithm

$\mathrm{o} \in A$
$\mathrm{e} \in V \backslash A$

for each $v \in \operatorname{Adj}[u]$
do if $v \in Q$ and $w(u, v)<k e y[v]$
then $k e y[v] \leftarrow w(u, v) \triangleright$ DECREASE-KEY

Example of Prim's algorithm

$$
0 \in A
$$

$$
\bullet \in V \backslash A
$$

$$
u \leftarrow \operatorname{EXTRACT}-\operatorname{MiN}(Q)
$$

$$
\text { for each } v \in \operatorname{Adj}[u]
$$

$$
\text { do if } v \in Q \text { and } w(u, v)<k e y[v]
$$

then $k e y[v] \leftarrow w(u, v) \triangleright$ DECREASE-KEY

Example of Prim's algorithm

Analysis of Prim

Handshaking Lemma $\Rightarrow \Theta(|E|)$ implicit Decrease-Key's.
Time $=\Theta(|V|) \cdot T_{\text {Extract-Min }}+\Theta(|E|) \cdot T_{\text {Decrease-Key }}$

Nov, Kruskal's algorithm

IDEA (again greedy):

Repeatedly pick edge with smallest weight as long as it does not form a cycle.

- The algorithm creates a set of trees (a forest)
- During the algorithm the added edges merge the trees together, such that in the end only one tree remains
- The correctness of this greedy strategy is not obvious and needs to be proven. (Proof skipped here.)

Example of Kruskal's algorithm

— MST edges
a set repr.

Edge 3 merged two singleton trees.

Example of Kruskal's algorithm

— MST edges
a set repr.

Example of Kruskal's algorithm
— MST edges set repr.

: , , Example of Kruskal's algorithm

Example of Kruskal's algorithm
— MST edges
a set repr.

Example of Kruskal's algorithm
_ MST edges set repr.

Skip edge 10 as it would cause a cycle.

Example of Kruskal's algorithm

Skip edge 12 as it would cause a cycle.

Example of Kruskal's algorithm

Disjomt-set oata structure (Union-Find)

Maintains a dynamic collection of pairwise-disjoint sets $\mathrm{S}=\left\{S_{1}, S_{2}, \ldots, S_{r}\right\}$.
Each set S_{i} has one element distinguished as the representative element.
Supports operations:
$O(1) \cdot \operatorname{MaKe}-\operatorname{Set}(x)$: adds new set $\{x\}$ to S
$O(\alpha(n)) \cdot \operatorname{UniON}(x, y)$: replaces sets S_{x}, S_{y} with $S_{x} \cup S_{y}$ $O(\alpha(n)) \cdot \operatorname{Find}-\operatorname{SeT}(x)$: returns the representative of the set S_{x} containing element x
$1<\alpha(n)<\log ^{*}(n)<\log (\log (n))<\log (n)$

