

CS 5633 -- Spring 2005

Dynamic Tables

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

3/1/05

CS 5633 Analysis of Algorithms

How large should a hash table be?

Goal: Make the table as small as possible, but large enough so that it won't overflow (or otherwise become inefficient).

Problem: What if we don't know the proper size in advance?

Solution: *Dynamic tables*.

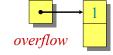
IDEA: Whenever the table overflows, "grow" it by allocating (via malloc or new) a new, larger table. Move all items from the old table into the new one, and free the storage for the old table.

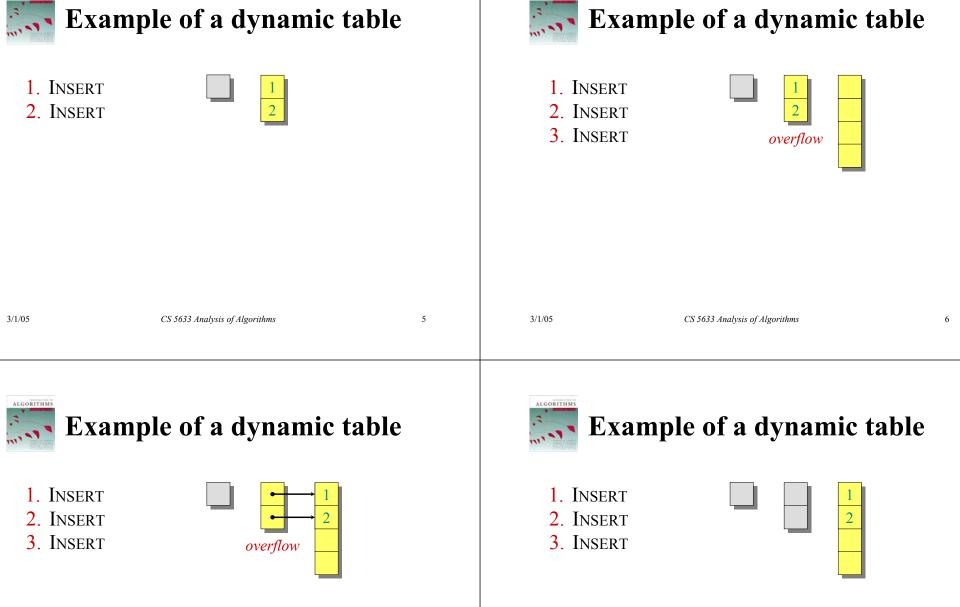
3/1/05

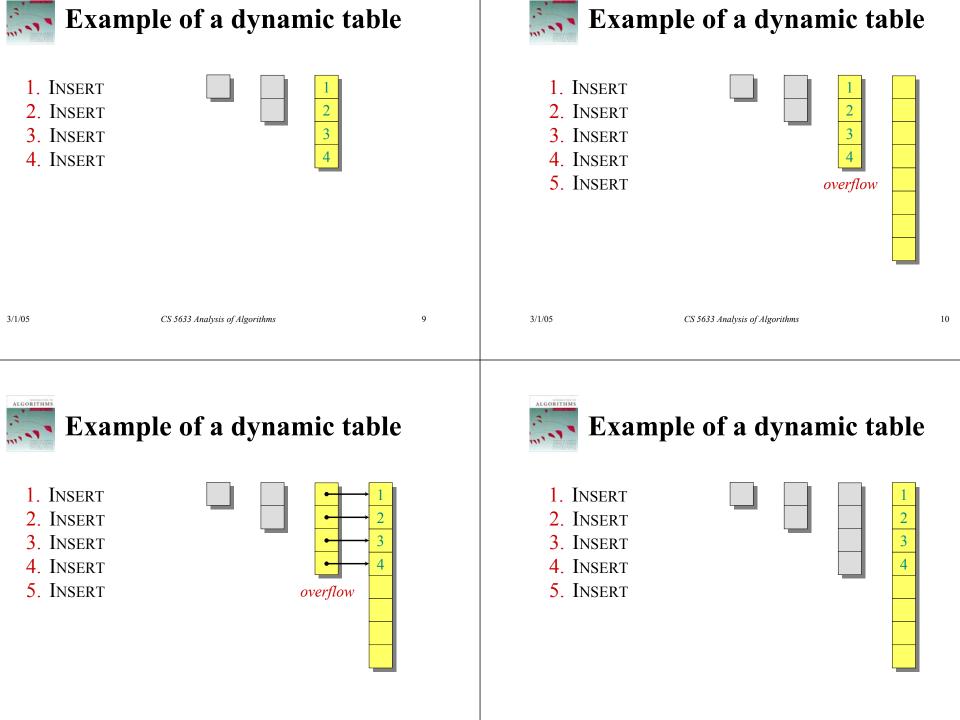
CS 5633 Analysis of Algorithms

Example of a dynamic table

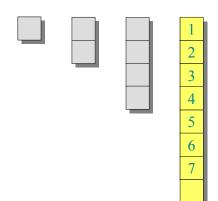
1. Insert 2. Insert






Example of a dynamic table

1. Insert


2. Insert

Example of a dynamic table

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert
- 5. Insert
- 6. Insert
- 7. Insert

3/1/05 CS 5633 Analysis of Algorithms 13 3/1/05 CS 5633 Analysis of Algorithms

Tighter analysis

Let c_i = the cost of the *i*th insertion

Worst-case analysis

Consider a sequence of n insertions. The worst-case time to execute one insertion is O(n). Therefore, the worst-case time for n insertions is $n \cdot O(n) = O(n^2)$.

WRONG! In fact, the worst-case cost for n insertions is only $\Theta(n) \ll O(n^2)$.

Let's see why.

Tighter analysis

Let c_i = the cost of the *i*th insertion

= 1 + cost to double array size

Tighter analysis

Let c_i = the cost of the *i*th insertion

Cost of *n* insertions =
$$\sum_{i=1}^{n} c_{i}$$

$$\leq n + \sum_{j=0}^{\lfloor \lg(n-1) \rfloor} 2^{j}$$

$$\leq 3n$$

$$= \Theta(n).$$

Thus, the average cost of each dynamic-table operation is $\Theta(n)/n = \Theta(1)$.

3/1/05

17

Tighter analysis

Let c_i = the cost of the *i*th insertion

CS 5633 Analysis of Algorithms

Amortized analysis

An *amortized analysis* is any strategy for analyzing a **sequence** of operations:

- compute the total cost of the sequence, OR
- amortized cost of an operation = average cost per operation, averaged over the number of operations in the sequence
- amortized cost can be small, even though a single operation within the sequence might be expensive

Even though we're taking averages, however, probability is not involved!

• An amortized analysis guarantees the average performance of each operation in the worst case.

Types of amortized analyses

Three common amortization arguments:

- the *aggregate* method,
- the *accounting* method, Won't cover in class • the *potential* method
 - We've just seen an aggregate analysis.

The aggregate method, though simple, lacks the

precision of the other two methods. In particular, the accounting and potential methods allow a specific *amortized cost* to be allocated to each operation.

CS 5633 Analysis of Algorithms

Accounting method

3/1/05

• Charge *i* th operation a fictitious *amortized cost* \hat{c}_i , where \$1 pays for 1 unit of work (i.e., time).

CS 5633 Analysis of Algorithms

- This fee is consumed to perform the operation, and • any amount not immediately consumed is stored in
- the **bank** for use by subsequent operations. • The bank balance must not go negative! We must

ensure that
$$\sum_{i=1}^{n} c_i \leq \sum_{i=1}^{n} \hat{c}_i$$
 for all n .

• Thus, the total amortized costs provide an upper bound on the total true costs.

3/1/05

21

Accounting analysis of dynamic tables Charge an amortized cost of $\hat{c}_i = \$3$ for the *i*th

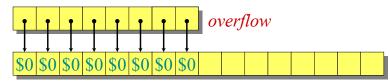
insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.

When the table doubles, \$1 pays to move a recent item, and \$1 pays to move an old item.

Example:

\$0 \$0 \$0 \$0 \$2 \$2 \$2 \$2 overflow


Accounting analysis of dynamic tables

Charge an amortized cost of $\hat{c}_i = \$3$ for the *i*th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.

When the table doubles, \$1 pays to move a recent item, and \$1 pays to move an old item.

Example:

3/1/05

CS 5633 Analysis of Algorithms

25


Accounting analysis of dynamic tables

Charge an amortized cost of $\hat{c}_i = \$3$ for the *i*th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.

When the table doubles, \$1 pays to move a recent item, and \$1 pays to move an old item.

Example:

CS 5633 Analysis of Algorithms

26

Accounting analysis (continued)

Key invariant: Bank balance never drops below 0. Thus, the sum of the amortized costs provides an upper bound on the sum of the true costs.

of the contract of the contrac										
i $size_i$ c_i \hat{c}_i $bank_i$	1	2	3	4	5	6	7	8	9	10
size _i	1	2	4	4	8	8	8	8	16	16
c_i	1	2	3	1	5	1	1	1	9	1
\hat{c}_i	2*	3	3	3	3	3	3	3	3	3
bank _i	1	2	2	4	2	4	6	8	2	4

3/1/05

Conclusions

- Amortized costs can provide a clean abstraction of data-structure performance.
- Any of the analysis methods can be used when an amortized analysis is called for, but each method has some situations where it is arguably the simplest.
- Different schemes may work for assigning amortized costs in the accounting method, sometimes yielding radically different bounds.

*Okay, so I lied. The first operation costs only \$2, not \$3.