The divide-and-conquer

 design paradigm

More Divide \& Conquer

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

1. Divide the problem (instance) into subproblems.
2. Conquer the subproblems by solving them recursively.
3. Combine subproblem solutions.

Example: merge sort

Recurrence for binary search

$$
\begin{aligned}
& n^{\log _{b} a}=n^{\log _{2} 1}=n^{0}=1 \Rightarrow \text { CASE } 2(k=0) \\
& \quad \Rightarrow T(n)=\Theta(\log n)
\end{aligned}
$$

Powering a number

Problem: Compute a^{n}, where $n \in \mathbf{N}$.
Naive algorithm: $\Theta(n)$.
Divide-and-conquer algorithm: (recursive squaring)

$$
\begin{gathered}
a^{n}= \begin{cases}a^{n / 2} \cdot a^{n / 2} & \text { if } n \text { is even; } \\
a^{(n-1) / 2} \cdot a^{(n-1) / 2} \cdot a & \text { if } n \text { is odd. }\end{cases} \\
T(n)=T(n / 2)+\Theta(1) \Rightarrow T(n)=\Theta(\log n) .
\end{gathered}
$$

Computing Fibonacci numbers

Naive recursive squaring: $F_{n}=\phi^{n} / \sqrt{5}$ rounded to the nearest integer.

- Recursive squaring: $\Theta(\log n)$ time.
- This method is unreliable, since floating-point arithmetic is prone to round-off errors.
Bottom-up (one-dimensional dynamic programming):
- Compute $F_{0}, F_{1}, F_{2}, \ldots, F_{\mathrm{n}}$ in order, forming each number by summing the two previous.
- Running time: $\Theta(n)$.

Fibonacci numbers

Recursive definition:

$$
\begin{aligned}
& F_{n}=\left\{\begin{array}{lll}
0 & \text { if } n=0 ; \\
1 & \text { if } n=1 \\
F_{n-1}+F_{n-2} & \text { if } n \geq 2
\end{array}\right. \\
& 0<112335132134 \cdots
\end{aligned}
$$

Naive recursive algorithm: $\Omega\left(\phi^{n}\right)$ (exponential time), where $\phi=(1+\sqrt{5}) / 2$ is the golden ratio.

Recursive squaring

Theorem: $\left[\begin{array}{cc}F_{n+1} & F_{n} \\ F_{n} & F_{n-1}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{n}$.
Algorithm: Recursive squaring. Time $=\Theta(\log n)$.
Proof of theorem. (Induction on n.)
Base $(n=1):\left[\begin{array}{ll}F_{2} & F_{1} \\ F_{1} & F_{0}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{1}$.

Recursive squaring

Inductive step $(n \geq 2)$:

$$
\begin{aligned}
{\left[\begin{array}{cc}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right] } & =\left[\begin{array}{cc}
F_{n} & F_{n-1} \\
F_{n-1} & F_{n-2}
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{n-1} \cdot\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{n}
\end{aligned}
$$

$\left.\begin{array}{ll}\text { Input: } & A=\left[a_{i j}\right], B=\left[b_{i j}\right] . \\ \text { Output: } & C=\left[c_{i j}\right]=A \cdot B .\end{array}\right\} \quad i, j=1,2, \ldots, n$.

$$
\begin{gathered}
{\left[\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
c_{21} & c_{22} & \cdots & c_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \cdots & c_{n n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right] \cdot\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right]} \\
c_{i j}=\sum_{k=1}^{n} a_{i k} \cdot b_{k j}
\end{gathered}
$$

Matrix multiplication

Standard algorithm

$$
\begin{aligned}
& \text { for } i \leftarrow 1 \text { to } n \\
& \qquad \begin{array}{l}
\text { do for } j \leftarrow 1 \text { to } n \\
\quad \text { do } c_{i j} \leftarrow 0 \\
\\
\quad \text { for } k \leftarrow 1 \text { to } n \\
\\
\quad \mathbf{d o} c_{i j} \leftarrow c_{i j}+a_{i k} \cdot b_{k j}
\end{array}
\end{aligned}
$$

Running time $=\Theta\left(n^{3}\right)$

Analysis of D\&C algorithm

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

$$
\begin{array}{ll}
P_{1}=a \cdot(f-h) & r=P_{5}+P_{4}-P_{2}+P_{6} \\
P_{2}=(a+b) \cdot h & s=P_{1}+P_{2} \\
P_{3}=(c+d) \cdot e & t=P_{3}+P_{4} \\
P_{4}=d \cdot(g-e) & u=P_{5}+P_{1}-P_{3}-P_{7} \\
P_{5}=(a+d) \cdot(e+h) & \\
P_{6}=(b-d) \cdot(g+h) & \begin{array}{l}
\text { 7 mults, } 18 \text { adds/subs. } \\
P_{7}=(a-c) \cdot(e+f)
\end{array} \\
\begin{array}{ll}
\text { Note: No reliance on } \\
\text { commutativity of mult! }
\end{array} \\
&
\end{array}
$$

- Multiply 2×2 matrices with only 7 recursive mults.

$$
\begin{array}{rlr}
P_{1}=a \cdot(f-h) & r= & P_{5}+P_{4}-P_{2}+P_{6} \\
P_{2}=(a+b) \cdot h & = & (a+d)(e+h) \\
P_{3}=(c+d) \cdot e & & +d(g-e)-(a+b) h \\
P_{4}=d \cdot(g-e) & & +(b-d)(g+h) \\
P_{5}=(a+d) \cdot(e+h) & = & a e+a h+d e+d h \\
P_{6}=(b-d) \cdot(g+h) & & +d g-d e-a h-b h \\
P_{7}=(a-c) \cdot(e+f) & & +b g+b h-d g-d h \\
& & =a e+b g
\end{array}
$$

Strassen's algorithm

1. Divide: Partition A and B into $(n / 2) \times(n / 2)$ submatrices. Form terms to be multiplied using + and - .
2. Conquer: Perform 7 multiplications of $(n / 2) \times(n / 2)$ submatrices recursively.
3. Combine: Form C using + and - on $(n / 2) \times(n / 2)$ submatrices.

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
$$

Analysis of Strassen

$$
\begin{gathered}
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right) \\
n^{\log _{b} a}=n^{\log _{2} 7} \approx n^{2.81} \Rightarrow \text { CASE } 1 \Rightarrow T(n)=\Theta\left(n^{\log 7}\right) .
\end{gathered}
$$

The number 2.81 may not seem much smaller than 3 , but because the difference is in the exponent, the impact on running time is significant. In fact, Strassen's algorithm beats the ordinary algorithm on today's machines for $n \geq 30$ or so.

Best to date (of theoretical interest only): $\Theta\left(n^{2.376 \cdots}\right)$.

Conclusion

- Divide and conquer is just one of several powerful techniques for algorithm design.
- Divide-and-conquer algorithms can be analyzed using recurrences and the master method (so practice this math).
- Can lead to more efficient algorithms

