

CS 5633 -- Spring 2005

Recurrences and Divide & Conquer

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk 1

1/27/05

CS 5633 Analysis of Algorithms

MERGE-SORT $A[1 \dots n]$

- 1. If n = 1, done.
- 2. Recursively sort $A[1 \dots \lceil n/2 \rceil]$ and $A[\lceil n/2 \rceil + 1 \dots n \rceil$.
- 3. "Merge" the 2 sorted lists.

Key subroutine: MERGE

1/27/05

CS 5633 Analysis of Algorithms

2

Analyzing merge sort

MERGE-SORT A[1 . . n] T(n) d_0 1. If n = 1, done. 2T(n/2)2. Recursively sort $A[1 \dots \lceil n/2 \rceil]$ and $A[\lceil n/2 \rceil + 1 \dots n \rceil$. dn 3. "Merge" the 2 sorted lists

Sloppiness: Should be $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$, but it turns out not to matter asymptotically.

Recurrence for merge sort

 $T(n) = \begin{cases} d_0 \text{ if } n = 1; \\ 2T(n/2) + dn \text{ if } n > 1. \end{cases}$

• We shall often omit stating the base case when $T(n) = \Theta(1)$ for sufficiently small *n*, but only when it has no effect on the asymptotic solution to the recurrence.

CS 5633 Analysis of Algorithms

Example: merge sort

- 1. Divide: Trivial.
- 2. Conquer: Recursively sort 2 subarrays.
- 3. *Combine:* Linear-time merge.

The divide-and-conquer design paradigm

- *1. Divide* the problem (instance) into subproblems.
- 2. *Conquer* the subproblems by solving them recursively.
- 3. *Combine* subproblem solutions.

1/27/05

5

CS 5633 Analysis of Algorithms

6

Binary search

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.
- *Example:* Find 9

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.
- *Example:* Find 9

1/27/05

9

CS 5633 Analysis of Algorithms

Recurrence for merge sort

 $T(n) = \begin{cases} \Theta(1) & \text{if } n = 1; \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$

• How do we solve T(n)? I.e., how do we found out if it is O(n) or $O(n^2)$ or ...?

- Merge sort runs in $\Theta(n \lg n)$ time.
- $\Theta(n \lg n)$ grows more slowly than $\Theta(n^2)$.
- Therefore, merge sort asymptotically beats insertion sort in the worst case.
- In practice, merge sort beats insertion sort for n > 30 or so. (Why not earlier?)

Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- It is good for generating **guesses** of what the runtime could be.

But: Need to **verify** that the guess is right. \rightarrow Induction (substitution method)

1/27/05	CS 5633 Analysis of Algorithms	17	1/27/05	CS 5633 Analysis of Algorithms	18

Substitution method

The most general method to solve a recurrence (prove O and Ω separately):

- 1. *Guess* the form of the solution:
 - (e.g. using recursion trees, or expansion)
- 2. *Verify* by induction (inductive step).
- **3.** *Solve* for O-constants n_0 and c (base case of induction)

The divide-and-conquer design paradigm

- *1. Divide* the problem (instance) into subproblems.
 - *a* subproblems, **each** of size *n/b*
- 2. *Conquer* the subproblems by solving them recursively.
- 3. *Combine* subproblem solutions.
 - Runtime is f(n)

The master method applies to recurrences of the form

T(n) = a T(n/b) + f(n) ,

where $a \ge 1$, b > 1, and f is asymptotically positive.

CS 5633 Analysis of Algorithms

21

Three common cases

Compare f(n) with $n^{\log_b a}$:

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log_b a}$ (by an n^{ε} factor).

Solution: $T(n) = \Theta(n^{\log_b a})$.

2. $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$. • f(n) and $n^{\log_b a}$ grow at similar rates. Solution: $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.

```
1/27/05
```

CS 5633 Analysis of Algorithms

Three common cases (cont.)

Compare f(n) with $n^{\log_b a}$:

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ε} factor),

and f(n) satisfies the *regularity condition* that $af(n/b) \le cf(n)$ for some constant c < 1. Solution: $T(n) = \Theta(f(n))$.


```
Ex. T(n) = 4T(n/2) + n

a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.

CASE 1: f(n) = O(n^{2-\varepsilon}) for \varepsilon = 1.

\therefore T(n) = \Theta(n^2).
```

```
Ex. T(n) = 4T(n/2) + n^2

a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.

CASE 2: f(n) = \Theta(n^2 \lg^0 n), that is, k = 0.

\therefore T(n) = \Theta(n^2 \lg n).
```


1/27/05

Ex. $T(n) = 4T(n/2) + n^3$ $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$ **CASE 3**: $f(n) = \Omega(n^{2+\varepsilon})$ for $\varepsilon = 1$ and $4(cn/2)^3 \le cn^3$ (reg. cond.) for c = 1/2. $\therefore T(n) = \Theta(n^3).$

Ex. $T(n) = 4T(n/2) + n^2/\lg n$ $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\lg n.$ Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\lg n)$.

CS 5633 Analysis of Algorithms

Merge sort: $a = 2, b = 2 \implies n^{\log_b a} = n$ $\Rightarrow CASE 2 (k = 0) \implies T(n) = \Theta(n \lg n)$.

1/27/05

25

CS 5633 Analysis of Algorithms

26