Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Key subroutine: Merge

Merge-Sort $A[1 \ldots n]$

1. If $n=1$, done.
2. Recursively sort $A[1 \ldots\lceil n / 2\rceil]$ and $A[\lceil n / 27+1 \ldots n]$.
3. "Merge" the 2 sorted lists.

Merge sort

Merging two sorted arrays

Analyzing merge sort

$T(n)$	Merge-Sort $A[1 \ldots n]$
d_{0}	1. If $n=1$, done.
$2 T(n / 2)$	2. Recursively sort $A[1 \ldots\lceil n / 2\rceil]$
$d n$	and $A[\lceil n / 2\rceil+1 \ldots n]$.
3. "Merge" the 2 sorted lists	

Sloppiness: Should be $T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)$, but it turns out not to matter asymptotically.

Recurrence for merge sort

$$
T(n)=\left\{\begin{array}{l}
d_{0} \text { if } n=1 ; \\
2 T(n / 2)+d n \text { if } n>1 .
\end{array}\right.
$$

- We shall often omit stating the base case when $T(n)=\Theta$ (1) for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence.
- But what does $T(n)$ solve to? I.e., is it $\mathrm{O}(\mathrm{n})$ or $\mathrm{O}\left(\mathrm{n}^{2}\right)$ or $\mathrm{O}\left(\mathrm{n}^{3}\right)$ or \ldots ?

The divide-and-conquer design paradigm

1. Divide the problem (instance) into subproblems.
2. Conquer the subproblems by solving them recursively.
3. Combine subproblem solutions.

Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

3	5	7	8	9	12	15

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
$\begin{array}{llll}3 & 5 & 7 & 8\end{array}$
$9 \quad 12 \quad 15$

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

$$
\begin{array}{lllllll}
3 & 5 & 7 & 8 & 9 & 12 & 15
\end{array}
$$

Recurrence for binary search

Recurrence for merge sort

$$
T(n)=\left\{\begin{array}{l}
\Theta(1) \text { if } n=1 ; \\
2 T(n / 2)+\Theta(\mathrm{n}) \text { if } n>1 .
\end{array}\right.
$$

- How do we solve $T(n)$? I.e., how do we found out if it is $\mathrm{O}(\mathrm{n})$ or $\mathrm{O}\left(\mathrm{n}^{2}\right)$ or \ldots ?

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.
$T(n)$

$\therefore .$, Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Conclusions

Recursion-tree method

- Merge sort runs in $\Theta(n \lg n)$ time.
- $\Theta(n \lg n)$ grows more slowly than $\Theta\left(n^{2}\right)$.
- Therefore, merge sort asymptotically beats insertion sort in the worst case.
- In practice, merge sort beats insertion sort for $n>30$ or so. (Why not earlier?)
- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- It is good for generating guesses of what the runtime could be.

But: Need to verify that the guess is right.
\rightarrow Induction (substitution method)

Substitution method

The most general method to solve a recurrence (prove O and Ω separately):

1. Guess the form of the solution:
(e.g. using recursion trees, or expansion)
2. Verify by induction (inductive step).
3. Solve for O-constants n_{0} and c (base case of induction)

The divide-and-conquer design paradigm

1. Divide the problem (instance) into subproblems.
a subproblems, each of size n / b
2. Conquer the subproblems by solving them recursively.
3. Combine subproblem solutions.

Runtime is $f(n)$

The master method

Three common cases

The master method applies to recurrences of the form

$$
T(n)=a T(n / b)+f(n),
$$

where $a \geq 1, b>1$, and f is asymptotically positive.

Compare $f(n)$ with $n^{\log _{b} a}$:

1. $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$.

- $f(n)$ grows polynomially slower than $n^{\log _{b} a}$ (by an n^{ε} factor).
Solution: $T(n)=\Theta\left(n^{\log _{b} a}\right)$.

2. $f(n)=\Theta\left(n^{\log _{b} a} g^{k} n\right)$ for some constant $k \geq 0$.

- $f(n)$ and $n^{\log _{b} a}$ grow at similar rates.

Solution: $T(n)=\Theta\left(n^{\log _{b} a} \lg ^{k+1} n\right)$.

Three common cases (cont.)

Compare $f(n)$ with $n^{\log _{b} a}$:
3. $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$.

- $f(n)$ grows polynomially faster than $n^{\log _{b} a}$ (by an n^{ε} factor),
and $f(n)$ satisfies the regularity condition that $a f(n / b) \leq c f(n)$ for some constant $c<1$.
Solution: $T(n)=\Theta(f(n))$.

Examples

$\boldsymbol{E x} . T(n)=4 T(n / 2)+n$
$a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n$.
Case 1: $f(n)=O\left(n^{2-\varepsilon}\right)$ for $\varepsilon=1$.
$\therefore T(n)=\Theta\left(n^{2}\right)$.
Ex. $T(n)=4 T(n / 2)+n^{2}$
$a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{2}$.
CASE 2: $f(n)=\Theta\left(n^{2} \lg ^{0} n\right)$, that is, $k=0$.
$\therefore T(n)=\Theta\left(n^{2} \lg n\right)$.

Examples

$$
\begin{aligned}
& \text { Ex. } T(n)=4 T(n / 2)+n^{3} \\
& a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{3} . \\
& \text { CASE 3: } f(n)=\Omega\left(n^{2+\varepsilon}\right) \text { for } \varepsilon=1 \\
& \text { and } 4(c n / 2)^{3} \leq c n^{3} \text { (reg. cond.) for } c=1 / 2 \text {. } \\
& \therefore T(n)=\Theta\left(n^{3}\right) \text {. }
\end{aligned}
$$

$\boldsymbol{E x} . T(n)=4 T(n / 2)+n^{2} / \lg n$
$a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{2} / \lg n$.
Master method does not apply. In particular, for every constant $\varepsilon>0$, we have $n^{\varepsilon}=\omega(\lg n)$.

Master theorem (summary)

$$
T(n)=a T(n / b)+f(n)
$$

CASE 1: $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$

$$
\Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right)
$$

CASE 2: $f(n)=\Theta\left(n^{\log _{b} a} \lg ^{k} n\right)$

$$
\Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \lg ^{k+1} n\right) .
$$

CASE 3: $f(n)=\Omega\left(n^{\log _{b^{a+}}}\right)$ and $a f(n / b) \leq c f(n)$

$$
\Rightarrow T(n)=\Theta(f(n))
$$

Merge sort: $a=2, b=2 \Rightarrow n^{\log _{b} a}=n$ \Rightarrow CASE $2(k=0) \Rightarrow T(n)=\Theta(n \lg n)$.

