Preliminary Schedule

Date	Material
Tu $1 / 18$	Describing and analyzing algorithms (Ch. 1, 2.1, 2.2) Algorithm description and analyzation; best case and worst case runtimes; insertion sort, incremental algorithm
Th 1/20	Asymptotic notation (Ch. 3, Appendix A), analyzing algorithms O, Ω, Θ, o, limit-theorem; runtime for code-snippets, harmonic number
Tu 1/25	Heapsort (Ch. 6) Abstract data types (ADT), priority queue, heap, heapsort, linear-time buildheap Homework 1 assigned
Th 1/27	Divide-and-conquer (Ch. 2.3) and recurrences (Ch. 4.1, 4.2) Divide-and-conquer, merge sort, binary search; Runtime recurrences. Solving re- currences with recursion tree; solving the recurrence with the substitution method (induction)
Tu 2/1	Master theorem (Ch. 4.3), more divide-and-conquer (31.6 pages 879-880; Ch. 30 pages 822-824; 28.2) Use of master theorem to solve recurrences. Repeated squaring for exponentiation, Fibonacci numbers, polynomial multiplication, Strassen's matrix multiplication. Homework 1 due
Th 2/3	Quicksort 7.1-7.3; Randomized algorithms, random variables and ex- pected values (Ch. C.3) Quicksort, best-case and worst-case runtimes, randomized quicksort; Expected run- time analysis. Random variables, expected value. Homework 2 assigned
Tu 2/8	Quicksort (Ch. 7.3,7.4) Randomized quicksort, expected runtime analysis.
Th 2/10	Sorting (Ch. 8.1, 8.2, 8.3) Decision trees, lower $\Omega(n$ log n) bound for comparison sorts, counting sort, radix sort Homework 2 due
Tu 3/1	Red-black trees (Ch. 13.1, 13.2, 13.3) Red-black tree property, rotations, insertion; abstract data types, ADT dictionary Homework 3 due
Tu 2/15	Test 1 Material until 2/8 (inclusive)
Th 2/17	Order statistics (Ch. 9) Order statistics (find i-th smallest element); Randomized selection, deterministic selection in linear time
Hashing (Ch. 11; not 11.3.3 and not 11.5) Direct-address tables, chaining, open addressing with linear probing, quadratic prob- ing, double hashing. Hash functions Homework 3 assigned	
Aggregate analysis (total runtime of n operations), accounting method (prepay for	

Date	Material
Th 3/3	B-trees (Ch. 18.1, 18.2) k-ary search trees, B-tree def., height, insertion Homework 4 assigned
Tu 3/8	Dynamic programming (Ch. 15.2, 15.3, 15.4) Fibonacci, binomial coefficient, LCS: fill table, then construct solution from the table.
Th 3/10	Dynamic programming (Ch. 15.2, 15.3, 15.4) Matrix chain multiplication; general outline of dynamic programming: Optimal substructure (recurrence), overlapping subproblems, fill table bottom-up or by memoization. Homework 4 due. Homework 5 assigned
Tu 3/22	Greedy algorithms (Ch. 16.2 pages 380 middle - 384; problem 16-1 on page 402) Greedy algorithms (greedy-choice property, optimal substructure). Making change, fractional knapsack.
Th 3/24	Minimum Spanning Trees (Ch. 23) Prim (grows single tree), Kruskal (grows forest; uses union/find data structure) Homework 5 due
Tu 3/29	Test 2 Material from 2/10 until 3/22 (inclusive)
Th 3/31	Union-Find (Ch. 21.1, 21.2, 21.3) Operations, list implementation, tree implementation, union-by-weight / union-by rank, path compression. Ackermann function, and inverse Ackermann function α. Homework 6 assigned
Tu 4/5	Single-source shortest paths (Ch. 24 without 24.4) Optimal substructure, triangle inequality, relaxation step; Dijkstra (only for nonnegative edge weights), predecessor tree (shortest path tree); Bellman-Ford, detection of negative-weight cycles; Shortest paths in a DAG
Th 4/7	All-Pairs Shortest Paths (Ch. 25.2) Dynamic programming: Floyd-Warshall
Tu 4/12	Maximum Flow (Ch. 26) Flow networks; Max-flow min-cut, augmenting path, residual network Homework 6 due
Th 4/14	Maximum Flow (Ch. 26) Ford-Fulkerson, Edmonds-Karp Homework 7 assigned
Tu 4/19	P and NP (Ch. 34) Decision problems, definition of classes P and NP , polynomial-time reductions
Th 4/21	P and NP (Ch. 34) NP-hardness, NP-completeness; Show that problems are NP-complete by reducing from other problems; TSP, Clique, Independent Set, Vertex Cover, Hamilton Path, Hamilton Circuit
Tu 4/26	Augmenting Data Structures (Ch. 14) Augmenting red-black trees; Dynamic order statistics, interval trees Homework 7 due
Th 4/28	Range Trees Range trees, in 2 dimensions and in d dimensions; preprocessing time, query time.
Tu 5/3	Test 3 Material from $3 / 24$ until 4/26 (inclusive)

