Preliminary Schedule

Date	Material
Tu 1/18	Describing and analyzing algorithms (Ch. 1, 2.1, 2.2)
,	Algorithm description and analyzation; best case and worst case runtimes; insertion
	sort, incremental algorithm
Th 1/20	Asymptotic notation (Ch. 3, Appendix A), analyzing algorithms
	$O, \Omega, \Theta, o, \text{ limit-theorem}; \text{ runtime for code-snippets, harmonic number}$
Tu 1/25	Heapsort (Ch. 6)
	Abstract data types (ADT), priority queue, heap, heapsort, linear-time buildheap
	Homework 1 assigned
Th $1/27$	Divide-and-conquer (Ch. 2.3) and recurrences (Ch. 4.1, 4.2)
	Divide-and-conquer, merge sort, binary search; Runtime recurrences. Solving re-
	currences with recursion tree; solving the recurrence with the substitution method
	(induction)
Tu 2/1	Master theorem (Ch. 4.3), more divide-and-conquer (31.6 pages 879–880;
	Ch. 30 pages 822–824; 28.2)
	Use of master theorem to solve recurrences. Repeated squaring for exponentiation,
	Fibonacci numbers, polynomial multiplication, Strassen's matrix multiplication.
	Homework 1 due
Th $2/3$	Quicksort 7.1–7.3; Randomized algorithms, random variables and ex-
	pected values (Ch. C.3)
	Quicksort, best-case and worst-case runtimes, randomized quicksort; Expected run-
	time analysis. Random variables, expected value.
	Homework 2 assigned
Tu 2/8	Quicksort (Ch. 7.3,7.4)
	Randomized quicksort, expected runtime analysis.
Th 2/10	Sorting (Ch. 8.1, 8.2, 8.3)
	Decision trees, lower $\Omega(n \log n)$ bound for comparison sorts, counting sort, radix sort
	Homework 2 due
Tu 2/15	Test 1
	Material until 2/8 (inclusive)
Th $2/17$	Order statistics (Ch. 9)
	Order statistics (find <i>i</i> -th smallest element); Randomized selection, deterministic
	selection in linear time
Tu $2/22$	Hashing (Ch. 11; not 11.3.3 and not 11.5)
	Direct-address tables, chaining, open addressing with linear probing, quadratic prob-
	ing, double hashing. Hash functions
	Homework 3 assigned
Th $2/24$	Amortized analysis (Ch. 17.1, 17.2, 17.4)
	Aggregate analysis (total runtime of n operations), accounting method (prepay for
ļ	later operations); binary counter, dynamic tables
Tu 3/1	Red-black trees (Ch. 13.1, 13.2, 13.3)
	Red-black tree property, rotations, insertion; abstract data types, ADT dictionary
	Homework 3 due

Date	Material
$\frac{\text{Th } 3/3}{\text{Th } 3/3}$	B-trees (Ch. 18.1, 18.2)
,	k-ary search trees, B-tree def., height, insertion
	Homework 4 assigned
Tu 3/8	Dynamic programming (Ch. 15.2, 15.3, 15.4)
/	Fibonacci, binomial coefficient, LCS: fill table, then construct solution from the
	table.
Th 3/10	Dynamic programming (Ch. 15.2, 15.3, 15.4)
′	Matrix chain multiplication; general outline of dynamic programming: Optimal sub-
	structure (recurrence), overlapping subproblems, fill table bottom-up or by memo-
	ization.
	Homework 4 due. Homework 5 assigned
Tu 3/22	Greedy algorithms (Ch. 16.2 pages 380 middle – 384; problem 16-1 on
14 9/22	page 402)
	Greedy algorithms (greedy-choice property, optimal substructure). Making change,
	fractional knapsack.
Th $3/24$	Minimum Spanning Trees (Ch. 23)
' -	Prim (grows single tree), Kruskal (grows forest; uses union/find data structure)
	Homework 5 due
Tu 3/29	Test 2
	Material from 2/10 until 3/22 (inclusive)
$\frac{1}{1}$ Th 3/31	Union-Find (Ch. 21.1, 21.2, 21.3)
/	Operations, list implementation, tree implementation, union-by-weight / union-by
	rank, path compression. Ackermann function, and inverse Ackermann function α .
	Homework 6 assigned
Tu 4/5	Single-source shortest paths (Ch. 24 without 24.4)
,	Optimal substructure, triangle inequality, relaxation step; Dijkstra (only for non-
	negative edge weights), predecessor tree (shortest path tree); Bellman-Ford, detec-
	tion of negative-weight cycles; Shortest paths in a DAG
Th $4/7$	All-Pairs Shortest Paths (Ch. 25.2)
	Dynamic programming: Floyd-Warshall
Tu 4/12	Maximum Flow (Ch. 26)
	Flow networks; Max-flow min-cut, augmenting path, residual network
	Homework 6 due
Th 4/14	Maximum Flow (Ch. 26)
	Ford-Fulkerson, Edmonds-Karp
	Homework 7 assigned
Tu 4/19	P and NP (Ch. 34)
	Decision problems, definition of classes P and NP, polynomial-time reductions
Th $4/21$	P and NP (Ch. 34)
	NP-hardness, NP-completeness; Show that problems are NP-complete by reducing
	from other problems; TSP, Clique, Independent Set, Vertex Cover, Hamilton Path,
	Hamilton Circuit
Tu $4/26$	Augmenting Data Structures (Ch. 14)
	Augmenting red-black trees; Dynamic order statistics, interval trees
mı , , '	Homework 7 due
Th $4/28$	Range Trees
	Range trees, in 2 dimensions and in d dimensions; preprocessing time, query time.
Tu 5/3	Test 3
	Material from $3/24$ until $4/26$ (inclusive)