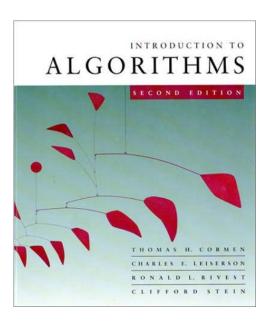


CS 5633 -- Spring 2004



P and NP

Carola Wenk

Slides courtesy of Piotr Indyk with small changes by Carola Wenk

P vs NP (interconnectedness of all things)

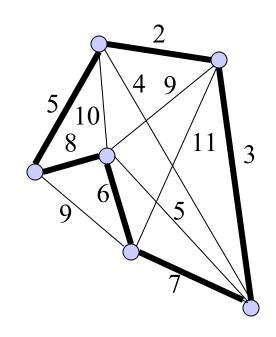
- A whole course by itself
- We'll do just two lectures
- More in advanced courses

Have seen so far

- Algorithms for various problems
 - Running times O(nm²),O(n²),O(n log n), O(n), etc.
 - I.e., polynomial in the input size
- Can we solve all (or most of) interesting problems in polynomial time?
- Not really...

Example difficult problem

- Traveling Salesperson Problem (TSP)
 - Input: undirected graph with lengths on edges
 - Output: shortest tour that visits each vertex exactly once
- Best known algorithm:
 O(n 2ⁿ) time.



Another difficult problem

- Clique:
 - Input: undirected graph G=(V,E)
 - Output: largest subset C
 of V such that every pair
 of vertices in C has an
 edge between them
- Best known algorithm:
 O(n 2ⁿ) time



What can we do?

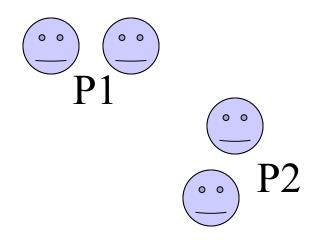
- Spend more time designing algorithms for those problems
 - People tried for a few decades, no luck
- Prove there is no polynomial time algorithm for those problems
 - Would be great
 - Seems *really* difficult
 - Best lower bounds for "natural" problems:
 - $\Omega(n^2)$ for restricted computational models
 - 4.5n for unrestricted computational models

What else can we do?

- Show that those hard problems are essentially equivalent. I.e., if we can solve one of them in polynomial time, then all others can be solved in polynomial time as well.
- Works for at least 10 000 hard problems

The benefits of equivalence

- Combines research efforts
- If one problem has polynomial time solution, then all of them do
- More realistically:
 Once an exponential
 lower bound is shown
 for one problem, it
 holds for all of them



Summing up

- If we show that a problem ∏ is equivalent to ten thousand other well studied problems without efficient algorithms, then we get a very strong evidence that ∏ is hard.
- We need to:
 - Identify the class of problems of interest
 - Define the notion of equivalence
 - Prove the equivalence(s)

Class of problems: NP

- Decision problems: answer YES or NO. E.g.,"is there a tour of length $\leq K$ "?
- Solvable in *non-deterministic polynomial* time:
 - Intuitively: the solution can be verified in polynomial time
 - E.g., if someone gives us a tour T, we can verify in *polynomial* time if T is a tour of length $\leq K$.
- Therefore, TSP is in NP.

Formal definitions of P and NP

• A problem \prod is solvable in polynomial time (or $\prod \in P$), if there is a polynomial time algorithm A(.) such that for any input x:

$$\prod(x)=YES \text{ iff } A(x)=YES$$

• A problem \prod is solvable in non-deterministic polynomial time (or $\prod \in NP$), if there is a polynomial time algorithm A(.,.) such that for any input x:

 $\prod(x)$ =YES iff there exists a certificate y of size poly(|x|) such that A(x,y)=YES

Examples of problems in NP

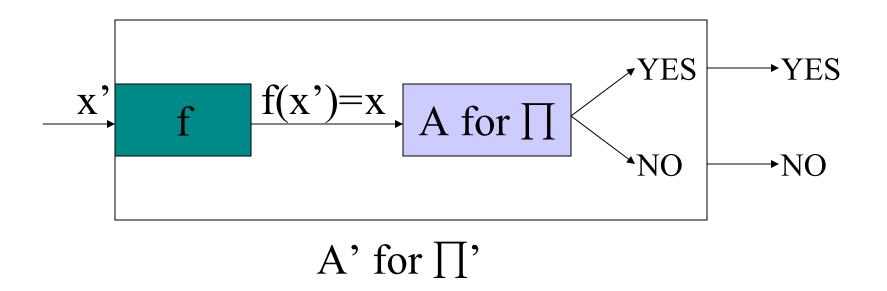
• Is "Does there exist a clique in G of size ≥K" in NP?

Yes: A(x,y) interprets x as a graph G, y as a set C, and checks if all vertices in C are adjacent and if $|C| \ge K$

- Is Sorting in NP?No, not a decision problem.
- Is "Sortedness" in NP?

Yes: ignore y, and check if the input x is sorted.

Reductions: ∏' to ∏



Reductions

• \prod ' is *polynomial time reducible* to $\prod (\prod' \leq \prod)$ iff there is a polynomial time function f that maps inputs x' to \prod ' into inputs x of \prod , such that for any x'

$$\prod'(x')=\prod(f(x'))$$

- Fact 1: if $\prod \in P$ and $\prod' \leq \prod$ then $\prod' \in P$
- Fact 2: if $\prod \in NP$ and $\prod' \leq \prod$ then $\prod' \in NP$
- Fact 3 (transitivity):

if
$$\prod$$
'' $\leq \prod$ ' and \prod ' $\leq \prod$ then \prod " $\leq \prod$

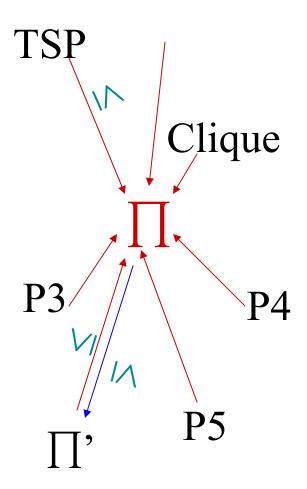
Recap

- We defined a large class of interesting problems, namely NP
- We have a way of saying that one problem is not harder than another $(\prod' \leq \prod)$
- Our goal: show equivalence between hard problems

Showing equivalence between difficult problems

Options:

- Show reductions between all pairs of problems
- Reduce the number of reductions using transitivity of "\le "
- Show that *all* problems in NP a reducible to a *fixed* \prod . To show that some problem $\prod' \in \mathbb{NP}$ is equivalent to all difficult problems, we only show $\prod \leq \prod'$.



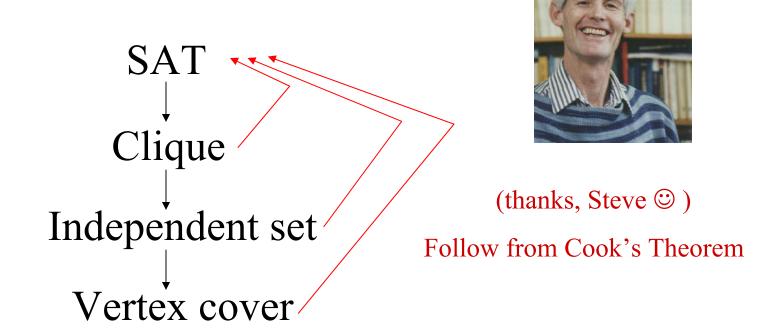
The first problem ∏

- Satisfiability problem (SAT):
 - Given: a formula φ with m clauses over n variables, e.g., $x_1 \vee x_2 \vee x_5$, $x_3 \vee \neg x_5$
 - Check if there exists TRUE/FALSE assignments to the variables that makes the formula satisfiable

SAT is NP-complete

- Fact: SAT \in NP
- Theorem [Cook'71]: For any $\prod' \in NP$, we have $\prod' \leq SAT$.
- Definition: A problem \prod such that for any $\prod' \in NP$ we have $\prod' \leq \prod$, is called *NP-hard*
- Definition: An NP-hard problem that belongs to NP is called *NP-complete*
- Corollary: SAT is NP-complete.

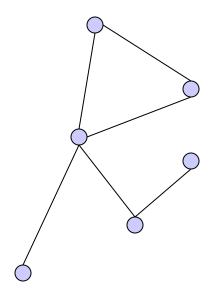
Plan of attack:



Conclusion: all of the above problems are NP-complete

Clique again

- Clique:
 - Input: undirected graphG=(V,E), K
 - Output: is there a subset C of V, |C|≥K, such that every pair of vertices in C has an edge between them



SAT ≤ Clique

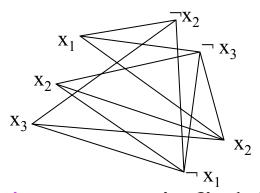
- Given a SAT formula $\varphi = C_1, ..., C_m$ over $x_1, ..., x_n$, we need to produce G = (V, E) and K, such that φ satisfiable iff G has a clique of size $\geq K$.
- Notation: a literal is either x_i or $\neg x_i$

SAT ≤ Clique reduction

- For each literal t occurring in φ , create a vertex \mathbf{v}_t
- Create an edge $v_t v_t$, iff:
 - -t and t' are not in the same clause, and
 - -t is not the negation of t'

$SAT \leq Clique example$

- Edge $v_t v_{t'} \Leftrightarrow {}^{\bullet t}$ and t' are not in the same clause, and ${}^{\bullet t}$ is not the negation of t'
- Formula: $x_1 \vee x_2 \vee x_3$, $\neg x_2 \vee \neg x_3$, $\neg x_1 \vee x_2$
- Graph:



• Claim: φ satisfiable iff G has a clique of size > m

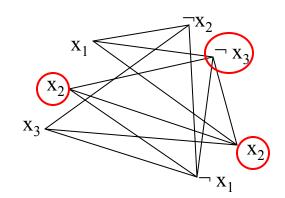
Proof

$$Edge \; v_t - v_{t'} \Leftrightarrow$$

- t and t' are not in the same clause, and
- t is not the negation of t'
- "→" part:
 - Take any assignment that satisfies φ .

E.g.,
$$x_1 = F$$
, $x_2 = T$, $x_3 = F$

— C is a clique



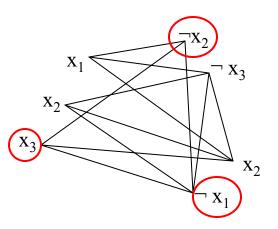
Proof

Edge
$$v_t - v_{t'} \Leftrightarrow$$

- t and t' are not in the same clause, and
- t is not the negation of t'
- "←" part:
 - Take any clique C of size $\geq m$ (i.e., = m)
 - Create a set of equations that satisfies selected literals.

E.g.,
$$x_3 = T$$
, $x_2 = F$, $x_1 = F$

The set of equations is consistent and the solution satisfies φ

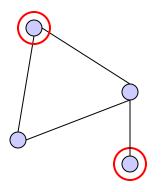


Altogether

- We constructed a reduction that maps:
 - YES inputs to SAT to YES inputs to Clique
 - NO inputs to SAT to NO inputs to Clique
- The reduction works in polynomial time
- Therefore, $SAT \le Clique \rightarrow Clique NP-hard$
- Clique is in $NP \rightarrow Clique$ is NP-complete

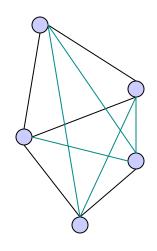
Independent set (IS)

- Input: undirected graph G=(V,E)
- Output: is there a subset S of V, |S|≥K such that no pair of vertices in S has an edge between them



Clique ≤ IS

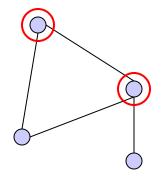
 Given an input G=(V,E), K to Clique, need to construct an input G'=(V',E'), K' to IS, such that G has clique of size ≥K iff G' has IS of size ≥K.



- Construction: $K'=K,V'=V,E'=\overline{E}$
- Reason: C is a clique in G iff it is an IS in G's complement.

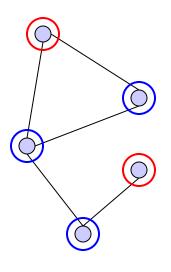
Vertex cover (VC)

- Input: undirected graph G=(V,E)
- Output: is there a subset C of V, $|C| \le K$, such that each edge in E is incident to at least one vertex in C.



$IS \leq VC$

• Given an input G=(V,E), K to IS, need to construct an input G'=(V',E'), K' to VC, such that G has an IS of size $\geq K$ iff G' has VC of size $\leq K'$.



- Construction: V'=V, E'=E, K'=|V|-K
- Reason: S is an IS in G iff V-S is a VC in G.