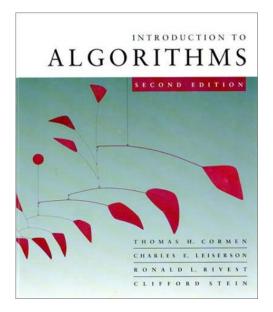


CS 5633 -- Spring 2004



Union-Find Data Structures

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Disjoint-set data structure (Union-Find)

Problem:

- Maintain a dynamic collection of *pairwise-disjoint* sets $S = \{S_1, S_2, ..., S_r\}.$
- Each set S_i has one element distinguished as the representative element, $rep[S_i]$.
- Must support 3 operations:
 - MAKE-SET(x): adds new set $\{x\}$ to S

with $rep[\{x\}] = x$ (for any $x \notin S_i$ for all i)

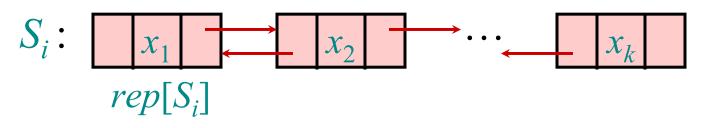
• UNION(x, y): replaces sets S_x, S_y with $S_x \cup S_y$ in S

(for any x, y in distinct sets S_x , S_y)

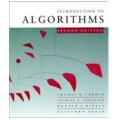
• FIND-SET(x): returns representative $rep[S_r]$ of set S_x containing element x

Simple linked-list solution

Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as an (unordered) doubly linked list. Define representative element $rep[S_i]$ to be the front of the list, x_1 .



- MAKE-SET(x) initializes x as a lone node. $-\Theta(1)$
- FIND-SET(x) walks left in the list containing x until it reaches the front of the list. $-\Theta(n)$
- UNION(x, y) concatenates the lists containing x and y, leaving rep. as FIND-SET[x].



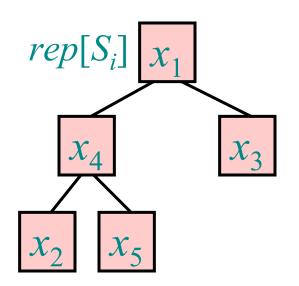
Simple balanced-tree solution

maintain how?

Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as a balanced tree (ignoring keys). Define representative element $rep[S_i]$ to be the root of the tree.

- MAKE-SET(x) initializes x as a lone node. $-\Theta(1)$
- FIND-SET(x) walks up the tree containing x until it reaches the root. -Θ(log n)
- UNION(x, y) concatenates the trees containing x and y, changing rep. of x or $y - \Theta(1)$

 $S_i = \{x_1, x_2, x_3, x_4, x_5\}$

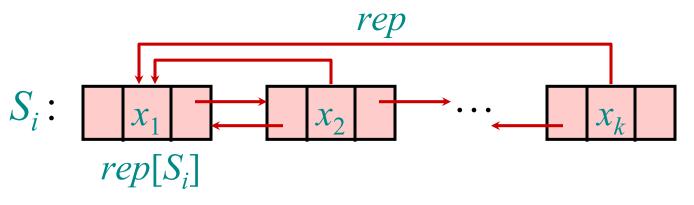


Plan of attack

- We will build a simple disjoint-union data structure that, in an amortized sense, performs significantly better than Θ(log n) per op., even better than Θ(log n), Θ(log log n), ..., but not quite Θ(1).
- To reach this goal, we will introduce two key *tricks*. Each trick converts a trivial ⊖(n) solution into a simple ⊖(log n) amortized solution. Together, the two tricks yield a much better solution.
- First trick arises in an augmented linked list. Second trick arises in a tree structure.

Augmented linked-list solution

Store $S_i = \{x_1, x_2, ..., x_k\}$ as unordered doubly linked list. Augmentation: Each element x_i also stores pointer $rep[x_i]$ to $rep[S_i]$ (which is the front of the list, x_1).

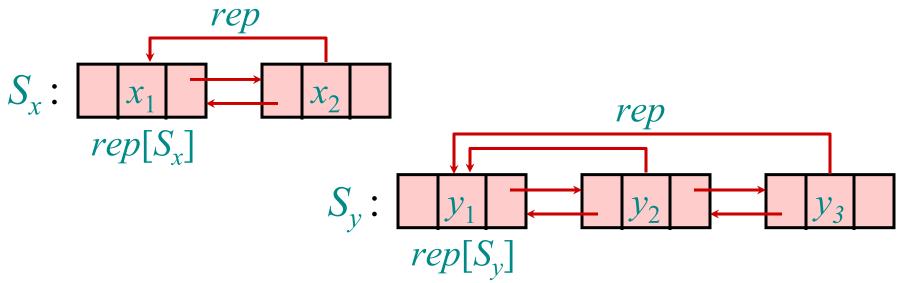


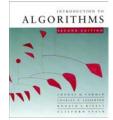
- FIND-SET(x) returns rep[x].
- UNION(x, y) concatenates the lists containing x and y, and updates the *rep* pointers for all elements in the list containing y.

Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$. UNION(x, y)

- concatenates the lists containing *x* and *y*, and
- updates the *rep* pointers for all elements in the list containing *y*.

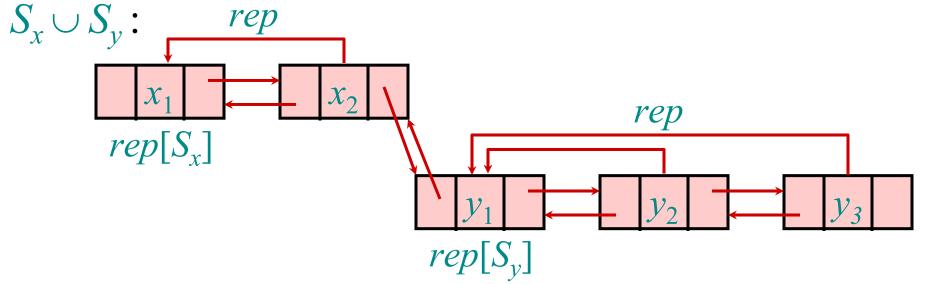




Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$. UNION(x, y)

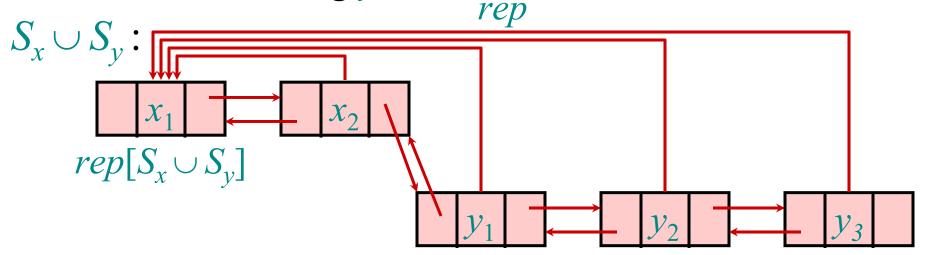
- concatenates the lists containing *x* and *y*, and
- updates the *rep* pointers for all elements in the list containing *y*.



Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$. UNION(x, y)

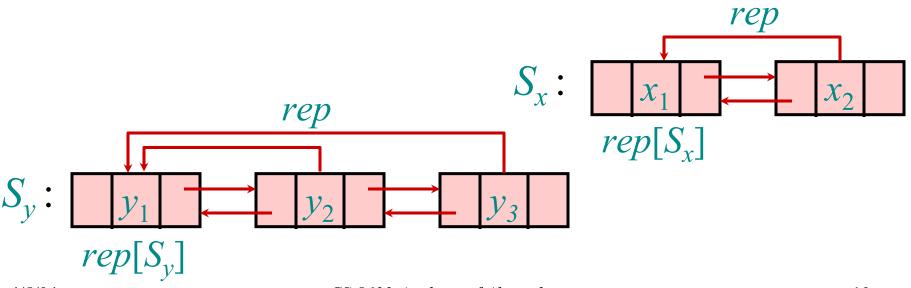
- concatenates the lists containing *x* and *y*, and
- updates the *rep* pointers for all elements in the list containing *y*.



Alternative concatenation

UNION(x, y) could instead

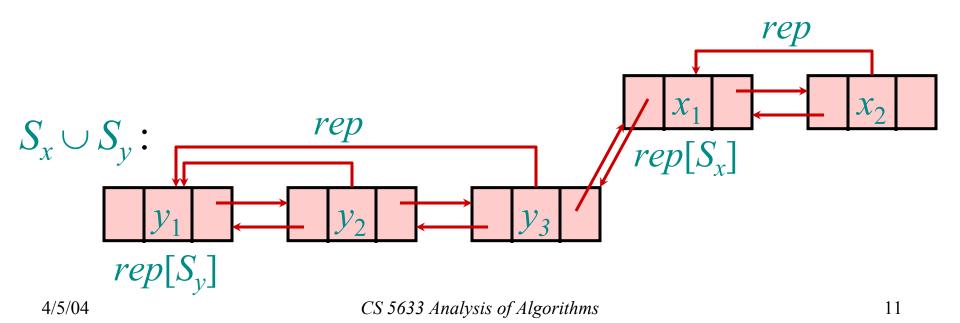
- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.



Alternative concatenation

UNION(x, y) could instead

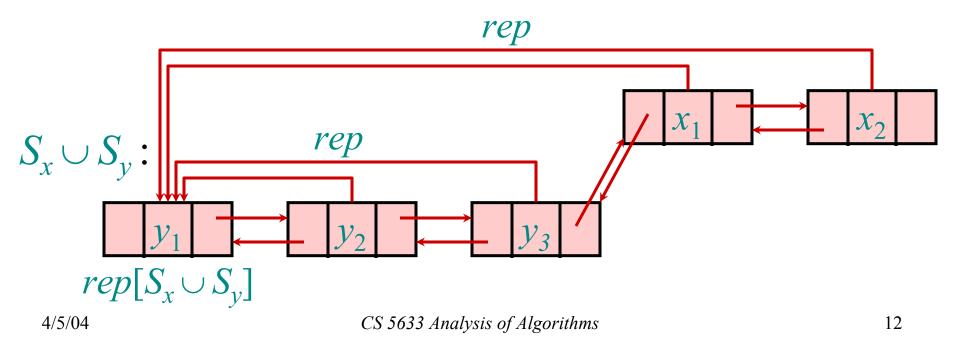
- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.

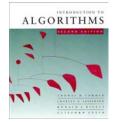


Alternative concatenation

UNION(x, y) could instead

- concatenate the lists containing *y* and *x*, and
- update the *rep* pointers for all elements in the list containing *x*.





Trick 1: Smaller into larger (weighted-union heuristic)

To save work, concatenate smaller list onto the end of the larger list. $Cost = \Theta(length of smaller list)$. Augment list to store its *weight* (# elements).

- Let *n* denote the overall number of elements (equivalently, the number of MAKE-SET operations).
- Let *m* denote the total number of operations.
- Let *f* denote the number of FIND-SET operations.

Theorem: Cost of all UNION's is $O(n \log n)$. **Corollary:** Total cost is $O(m + n \log n)$.

Analysis of Trick 1 (weighted-union heuristic)

Theorem: Total cost of UNION's is $O(n \log n)$.

Proof. • Monitor an element x and set S_x containing it.

- After initial MAKE-SET(x), weight[S_x] = 1.
- Each time S_x is united with S_y , weight $[S_y] \ge weight[S_x]$,
 - pay 1 to update rep[x], and
 - weight $[S_x]$ at least doubles (increases by weight $[S_y]$).
- Each time S_x is united with smaller set S_y ,
 - pay nothing, and
 - weight $[S_x]$ only increases.

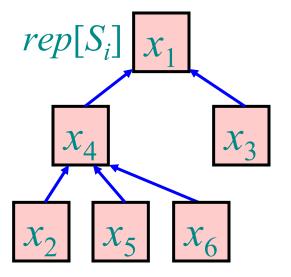
Thus pay $\leq \log n$ for *x*.

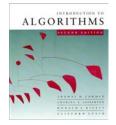
Disjoint set forest: Representing sets as trees

Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as an unordered, potentially unbalanced, not necessarily binary tree, storing only *parent* pointers. *rep*[S_i] is the tree root.

- MAKE-SET(x) initializes x as a lone node. $-\Theta(1)$
- FIND-SET(x) walks up the tree containing x until it reaches the root. -Θ(depth[x])
- UNION(*x*, *y*) concatenates the trees containing *x* and *y*...

$$S_i = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$





Trick 1 adapted to trees

• UNION(x, y) can use a simple concatenation strategy: Make root FIND-SET(y) a child of root FIND-SET(x).

 \mathcal{X}

 χ_{ϵ}

 X_{Δ}

 χ_{5}

 χ_{γ}

CS 5633 Analysis of Algorithms

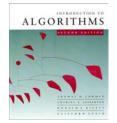
 $\Rightarrow \text{FIND-SET}(y) = \text{FIND-SET}(x).$ • Adapt Trick 1 to this context:

Union-by-weight:

Merge tree with smaller weight into tree with larger weight.

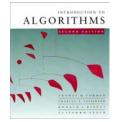
Variant of Trick 1 (see book):
<u>Union-by-rank:</u>
rank of a tree = its height

4/5/04



Trick 1 adapted to trees (union-by-weight)

- Height of tree is logarithmic in weight, because:
 - Induction on the weight
 - Height of a tree T is determined by the two subtrees T_1 , T_2 that T has been united from.
 - Inductively the heights of T_1 , T_2 are the logs of their weights.
 - height(T) = max(height(T₁), height(T₂)) possibly +1, but only if T_1 , T_2 have same height
- Thus total cost is $O(m + f \log n)$.

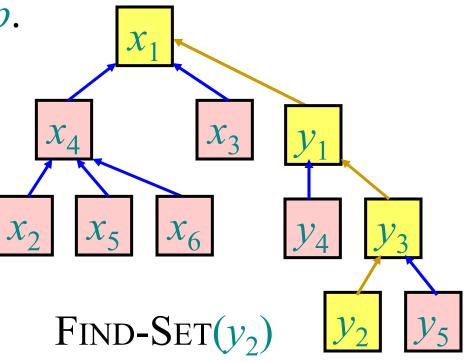


Trick 2: Path compression

When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

Cost of FIND-SET(x) is still $\Theta(depth[x])$.

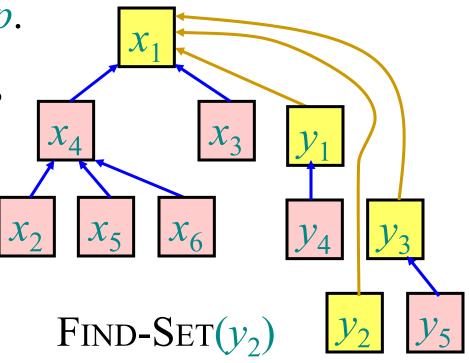


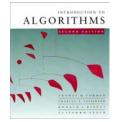
Trick 2: Path compression

When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

Cost of FIND-SET(x) is still $\Theta(depth[x])$.



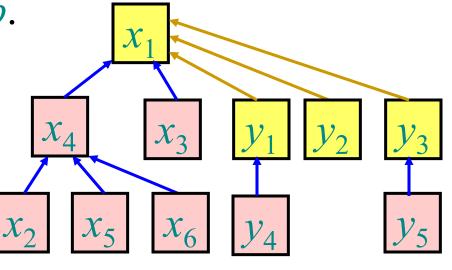


Trick 2: Path compression

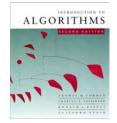
When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

Cost of FIND-SET(x) is still $\Theta(depth[x])$.



FIND-SET (y_2)

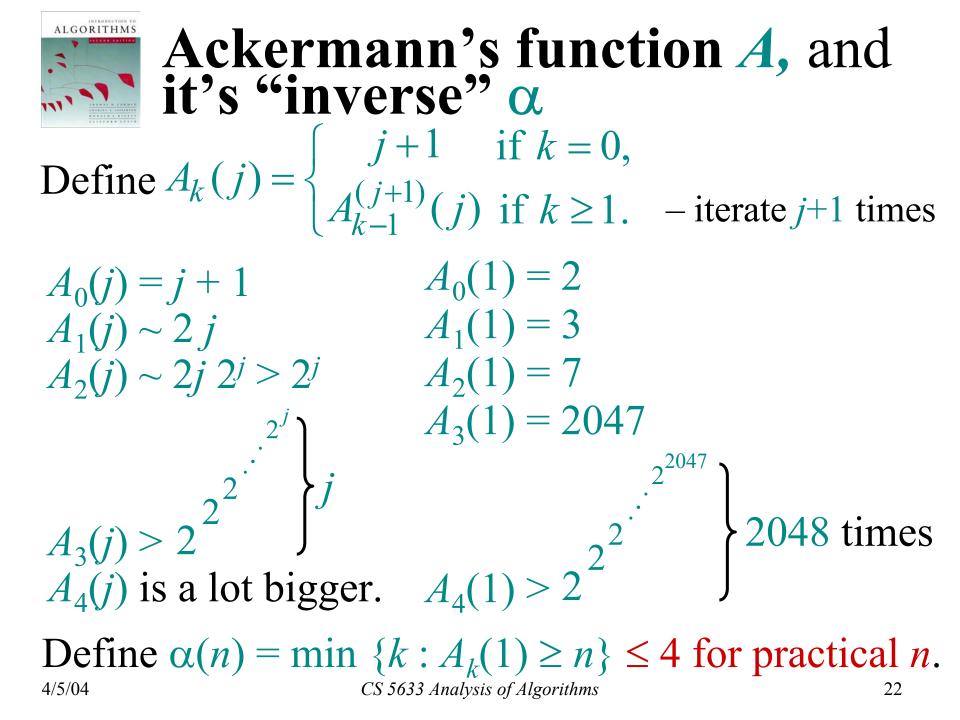


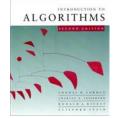
Analysis of Trick 2 alone

Theorem: Total cost of FIND-SET's is $O(m \log n)$. *Proof:* By amortization. Omitted.

Theorem: If all UNION operations occur before all FIND-SET operations, then total cost is O(m).

Proof: If a FIND-SET operation traverses a path with k nodes, costing O(k) time, then k - 2 nodes are made new children of the root. This change can happen only once for each of the n elements, so the total cost of FIND-SET is O(f + n).





Analysis of Tricks 1 + 2 for disjoint-set forests

Theorem: In general, total cost is $O(m \alpha(n))$. (long, tricky proof – see Section 21.4 of CLRS)

Suppose a graph is given to us *incrementally* by

- ADD-VERTEX(v)
- ADD-EDGE(u, v)

and we want to support *connectivity* queries:

• CONNECTED(u, v):

Are u and v in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.

Application: Dynamic connectivity

Sets of vertices represent *connected components*. Suppose a graph is given to us *incrementally* by

- ADD-VERTEX(v) MAKE-SET(v)
- ADD-EDGE(u, v) if not CONNECTED(u, v)then UNION(v, w)

and we want to support *connectivity* queries:

• CONNECTED(u, v): - FIND-SET(u) = FIND-SET(v)Are u and v in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.